«Energy Technologies and Resource Saving» 3-2016

 

Karp I.M., Academician of the National Academy of Sciences of Ukraine, Doctor of Technical Sciences, Professor, Sigal I.Ya., Doctor of Technical Sciences, Professor, Smikhula A.V., Candidate of Technical Sciences,

Duboshiy O.M., Candidate of Technical Sciences

The Gas Institute of National Academy of Sciences of Ukraine, Êiev

39, Degtyarivska Str., 03113 Kiev, Ukraine, e-mail: isigal@ukr.net

 

The Problem of Change Anthracite and Lean Coal Project for Thermal Power Plants of Ukraine (Review)

 

The preferred way of replacement anthracite and lean coal of Donetsk basin on six Thermal Power Plant (TTP) of Ukraine is import of coal with close characteristics. The surpluses of flame coal or gas flame coal produced within the country, should be used to replace the anthracite coal to the TPP of Ukraine. The estimated total capacity of units that need to be redesigned for the full replacement of anthracite and lean gas coal to the TPP of Ukraine is about 3.8 GW. However, complete substitution of anthracite and lean coal to flame coal or gas flame coal to the TPP of Ukraine requires comprehensive economic calculations. It is shown that necessary pay attention for the following activities for use flame coal or gas flame coal instead of anthracite or lean coal: reconstruction of system for coal drying and shredding; implementation of activities and equipment for new anti-explosion and anti-fire systems for use more fire risk fuel; replacement or reconstruction of burners; testing new maximum load and the working load range of steam boiler for use flame coal or gas flame coal; definition potential problems with and finding ash conditions deposits on the heating surfaces. Most important for change fuel project with replacement anthracite coal and Lean coal for use flame coal or gas flame coal is system for coal drying and shredding. Although it is possible use hot air for drying flame coal or gas flame coal but preferably better used system for coal drying and shredding with concentration oxygen in drying agent not more 16 %. For reduce the oxygen concentration in the system for coal drying and shredding using need exhaust gas additive. Taking into consideration the poor state of the atmospheric air in the cities it is advisable to save the work of municipal CHP (combined heat and power) of Ukraine with use natural gas. Bibl. 20, Fig. 5, Tab. 5.

Key words: coal, boilers, combustion, thermal power plant.

 

References

 

1. Chernyavskiy M.V., Rokhman B.B., Provalov O.Yu., Kosyachkov O.V. [Experience of imported coal burning in the boilers of thermal power plants and cogeneration plants], Energotechnologii i resursosberezhenie [Energy Technologies and Recourse Saving], 2015, (4), pp. 15–23. (Rus.)

2. DSTU 3472-96. [Brown coals, hard coals and anthracite. Classification], Êiev : Derzhstandart Ukrayini, 2007, 6 p. (Ukr.)

3. Chernyavskiy M.V. [Modern problems of fuel supply and consumption at Ukrainian TPPs], Energotechnologii i resursosberezhenie [Energy Technologies and Recourse Saving], 2015, (3), pp. 5–19. (Ukr.)

4. Teplovoj raschet kotlov : Normativnyj metod, NPO CKTI, Sankt-Peterburg, 1998, 256 p. (Rus.)

 5. Teplovoy raschet kotelnyih agregatov «Normativnyiy metod», Moscow : Energiya, 1973, 201 p. (Rus.).

6. Volchyn I.A, Dunayevska N.I., Haponych L.S., Chernyavskyiy M.V., Topal O.I., Zasyadko Ya.I. [Prospects for the implementation of clean coal technologies in the energy sector of Ukraine], Êiev : GNOZIS, 2013, 308 p. (Ukr.) 7. Robota OES Ukrayini stanom na 26 sichnya 2016 roku, Tsentr doslidzhen energetiki. EIR Center. — 26.02.2016. — [Online recourse]. — Access mode: http://eircenter.com/multimedia/infografika/ 2016/01/26/robota-oes-ukrayini-stanom-na- 26-sichnya-2016-roku/ (Ukr.)

8. Po voprosu snizheniya temperatury peregretogo para energoustanovok. Tsirkulyar GTU Minenergo SSSR ¹ Ts-4/71, Moscow, 1971. (Rus.)

9. Kapelson L.M. Organizatsiya i provedenie opytnogo szhiganiya neproektnogo topliva, Elektricheskie stantsii, 2001, (5), pp. 16–21. (Rus.)

10. Gorbovskiy A. Sverhplanovyie ob’emyi, Energobiznes, 2014, (1). — [Online recourse] — Access mode:

http://www.e-b.com.ua/get/?t=energo&id=62840 (Rus.)

11. Voloshenko A.V., Medvedev V.V., Ozerova I.P. Printsipialnye shemy parovyh kotlov i toplivopodach, Tomsk : Izdatelstvo Tomskogo politehnicheskogo universiteta, 2011, 100 p. (Rus.)

12. Hzmalyan D.M., Kagan Ya.A. Teoriya goreniya i topochnye ustroystva, Moscow : Energiya, 1976, 488 p. (Rus.) 13. GKD 34.20.507-2003. Tehnichna ekspluatatsiya elektrichnih stantsiy i merezh. Pravila : Zatverdzheno nakazom Minpalivenergo Ukrayini, 13.06.2003 No. 296, 350 p. — [Online recourse]. — Access mode: http://mpe.kmu.gov.ua/minugol/doccatalog/document? id=242930 (Ukr.)

14. SO 153-34.03.352-2003. Instruktsiya po obespecheniyu vzryvobezopasnosti toplivopodach i ustanovok dlya prigotovleniya i szhiganiya pylevidnogo topliva : Utverzhdeno Prikazom Ministerstva energetiki Rossiyskoy Federatsii 24.06.2003, No. 251, Ìoscow, 2004, 49 p. (Rus.)

15. Chernyavskiy N.V., Kosyachkov A.V., Filippenko Yu.N., Rudavina E.V., Voronov A.N., Sovershenstvovanie trebovaniy k pokazatelyam ugley dlya pylevidnogo szhiganiya na TES i metodov ih oprobovaniya, Tehnicheskaya teplofizika i promyshlennaya teploenergetika, 2013, (5), pp. 137–149. (Rus.)

16. Voronov A.N., Chernyavskiy N.V. Povyshenie bezopasnosti ekspluatatsii pylesistem kotloagregatov TES za schet upravleniya kachestvom ugolnoy produktsii, Tezisy dopovidey na 10 Mizhnarodniy konferentsii «Vugilna energetika : Problemi reabilitatsiyi ta rozvitku» (Kiev, veresen 2014 r.), Kiev : Institut Ugolnyh Energotechnologiy NAN Ukrayiny, 2014, pp. 40–43. (Rus.)

17. Baranov P.A. Preduprezhdenie avariy parovyh kotlov, Moscow : Energoatomizdat, 1991, 273 p. (Rus.)

18. Meyklyar M.V. Sovremennye kotelnye agregaty TKZ, Moscow : Energiya, 1978, 224 p. (Rus.)

19. Miroshnichenko Ye.S. [Reconstruction of Coal-Pulverization Systems in the Modernization of Boiler Units of Thermal Power Plants], Energotechnologii i resursosberezhenie [Enrgy Technology and Recourse Saving], 2015, (5–6), pp. 77–87. (Rus.)

20. Miroshnichenko Ye.S. Sovershenstvovanie sposobov toplivopodgotovki i pyileprigotovleniya na suschestvuyuschih TES, Tezisy dopovidey na 10 Mizhnarodniy konferentsii «Vugilna energetika : Problemi reabilitatsiyi ta rozvitku» (Kiev, veresen 2014 r.), Kiev : Institut Ugolnyh Energotechnologiy NAN Ukrayiny, 2014, pp. 48–51. (Ukr.)

 

Makarova K.V., Candidate of Chemical Sciences, Savitskiy D.P.,Candidate of Chemical Sciences,

Makarov A.S., Doctor of Technical Sciences, Sadovskiy D.Yu.

Institute of Colloid and Water Chemistry of National Academyof Sciences of Ukraine, Kiev

42, Academic Vernadskij Ave., 03680 Kiev-142, Ukraine, e-mail: makarova_katja@ukr.net

 

Influence of Stabilization Technologies on Rheological Properties and Stability of Coal-Water Suspensions

 

During production of water-coal suspensions based on low-ash subbituminous coal, inevitably there is a problem of stability due to the deposition of carbon particles in a dispersion medium, which can be solved by the adding of water-soluble polymers. When the water- soluble polymers are using as stabilizers the great importance have the concentration factor and the technology of the stabilizer insertion. Based on the research was studied the influence of water-soluble polymer concentration and a stabilizing technology on rheological properties and stability of coal-water slurries. The optimal polymer concentration at which the system have the lowest viscosity and the highest stability was found. Also discussed stabilization techniques thanks to which it is possible to increase the stability of coal-water slurries. Bibl. 7, Fig. 2, Tab. 1.

Key words: coal-water suspensions, structure formation, stability, polymer, rheological properties.

 

References

 

1. Deljagin G.N., Kagan Ja.M., Kondratev A.S. Zhidkoe toplivo na osnove ugolnyh suspenzij : Vozmozhnosti i perspektivy ispolzovanija, Rossijskij himicheskij zhurnal, 1994, (3), pp. 22–27. (Rus.)

2. Hodakov G.S. Vodougolnye suspenzii v jenergetike, Teplojenergetika, 2007, (1), pp. 35–45. (Rus.)

3. Ur’ev N.B. Vysokokoncentrirovannye dispersnye sistemy, Moscow : Himija, 1980, 320 p. (Rus.)

4. Makarov A.S., Degtjarenko T.D., Olof³nsk³j E.P. F³ziko-h³m³chn³ osnovi oderzhannja visokoncentrovanih vodovug³l’nih suspenz³j, Visnyk Akademii’ nauk Ukraynskoj radjans’koi’ socialistychnoi’ respubliky, 1989, (2), pp. 66–75. (Ukr.)

5. Makarova E.V., Makarov A.S., Savickij D.P. Vlijanie vodorastvorimyh polimerov na stabil’nost’ vodnyh suspenzij nizkozol’nogo uglja, Voprosy himii i himicheskoj tehnologii, 2015, 1, pp. 26–29. (Rus.)

6. Baran A.A. Stabilizacija dispersnyh sistem vodorastvorimymi polimerami, Uspehi himii, 1985, 54 (7), pp. 1100–1126. (Rus.)

7. Nepper D. Stabilizacija kolloidnyh dispersij polimerami, Moscow : Mir, 1986, 415 p. (Rus.)

 

Klymenko V.V., Doctor of Technical Sciences, Professor, Kravchenko V.I., Candidate of Technical Sciences, Kyrychenko A.M., Doctor of Technical Sciences, Professor, Lychuk M.V., Candidate of Physical and Mathematical Sciences, Soldatenko V.P.

Kirovograd National Technical University, Kirovograd

8, University Ave., 25003 Kirovograd, Ukraine, e-mail: klymvas@ukr.net

 

Experimental Evaluation of the Manufacture of Solid Biofuels from Composites Based on Vegetable Waste

 

An analysis of pressequipment used for the manufacture of solid biofuels from plant waste and shows the feasibility of using stamppresses vertical punch. The experimental evaluation of solid biofuel manufacturing of composites based on recycling the press with vertical punch. Found that a composite with the composition «straw + ÐET (Polyethylene Terephthalate)» at a pressure of 298 MPa pellets produced satisfactory quality and maximum density of 0,82 g/cm3 at PET content 10 %, which rensity is deduced to 0,72 g/cm3 in pellets containing PET 30 %; «vegetable waste + brown coal» composite pellets produced in satisfactory quality, where density increase from 0,95 g/cm3 to 1,09 g/cm3 (with increasing content of brown coal from 5 % to 50 %). The results may be useful in development of energy efficient manufacturing technology of biofuel composites at pressequipment, based on recycling. Bibl. 15, Fig. 6, Tab. 3.

Key words: biofuels, pellets, briquettes, vegetable waste, PET, brown coal, composites, matrix, punch, pressing, density, hardness.

 

References

 

1. Tehnologija vyrobnyctva biopalyva. — [Online resource]. — Access mode: http://bio.ukrbio.com/ ua/articles/2344/ (Ukr.)

2. Dian Andrianiaand Tinton Dwi Atmaja. Alternative mixing scenarios and pretreatment manner to optimize wood fuel pellet. International Conference on Sustainable Energy Engineering and Application (ICSEEA) Inna Garuda Hotel, Yogyakarta, Indonesia, 6–7 Nov. 2012, pp. 21–26

 3. Shtefan Je.V., Ryndjuk D.V., Taran O.V. [The study of structural and mechanical properties of dispersed materials of plant origin], Zbirnyk naukovyh prac‘ Vinnyc‘kogo nacional‘nogo agrarnogo universytetu. Serija: Tehnichni nauky, Vinnycja, 2012, 10 (1), pp. 181–185. (Ukr.)

4. Osnovnye tipy slozhnyh polijefirov ili analogov PET materiala. — [Online resource]. — http://www.eplastic. ru/spravochnik/materiali /pet (Rus.)

5. Bljum Ja.B., Pletuha G.G., Grygorjuk I.P., Dubrovin V.O., Jemec‘ A.I., Zabarnyj G.M. [New technologies bioenerhokonversiyi], Kiev : AgrarMediaGrup, 2010, 326 p. (Ukr.)

6. Kritan P., Matus M. [Experimental tests of wood molding], Medzinarodny odborny seminar, Briketovani a peletovanie 2007: Strojnicka fakulta STU Bratislava, 2007, pp. 12–20. (Slo.)

7. Kott J. [Technical and Economic Aspects of the Production of Pellets from Biomass], In: Briketovanie a peletovanie — sbornik prednasok 2009. Briketovani a peletovanie : Strojnicka fakulta STU Bratislava, 2009, pp. 75–81. (Slo.)

8. Tverde biopalyvo: tehnologichni vymogy, vlastyvosti komponentiv ta tehnologija vyrobnyctva. — [Online resource]. — Access mode: http://www.agro-business. com.ua/ideii-i-trendy/2424-tverde-biopalyvo-tek hnologichni-vymogy-vlastyvosti-komponenttiv-ta-tekhn ologiia-vyrobnytstva.html. (Ukr.)

9. Zidkova P., Obdrzalek O., Kovar L. [The pelletising process: the aspects that influence denstity of wood pellets], Sbornik vedeckych praci Vysoke skoly banske.— Technicke univerzity Ostrava. Rada strojni, 2011, 57 (1), pp. 283–289. (Cze.)

10. Levko C. [The results of experimental studies densification stem plant material], Visnyk L‘vivs‘kogo nacional‘nogo agrarnogo universytetu. Ser. Agroinzhenerni doslidzhennja, 2013, (17), pp. 130–137. (Ukr.)

11. Zotova E.V., Safonov A.O., Platonov A.D. [Analytical study of parameters that determine the technology to produce wood pellets], Lesotehnicheskij zhurnal, Derevopererabotka. Himicheskie tehnologii, 2014, (1), pp. 127–132. (Rus.)

12. Klymenko V.V., Kravchenko V.I., Starostin Yu.P. [Result poperedn³h dosl³dzhen vigotovlennya palivnih pellet s Roslin v³dhod³v], Zb. tez dopovidej Mizhnarodnoi’ naukovo-praktychnoi’ konferencii’ Problemy energoefektyvnosti ta avtomatyzacii’ v promyslovosti ta sil’s’komu gospodarstvi, Kirovo grad : Kirovograd. Nac. Techn. University, 2015, pp. 45–46. (Ukr.)

13. Tajc E.M., Andreeva I.A. [Methods of analysis and testing of coals], Moscow : Nedra, 1983, 301 p. (Rus.)

14. Medyns’kyj V.S. [Materials science and technology of construction materials], Kirovograd : POLIMEDServis, 2006, 208 p. (Ukr.)

15. Vintoniv I.S. Derevynoznavstvo, Lviv : Ukr. derzhavnyj lisotehnichnyj universitet, 2005, 256 p. (Ukr.)

 

Zhovtyansky V.A., Corr. Member of National Academy of Sciences of Ukraine, Doctor of Physical and Mathematical Sciences, Orlyk V.N., Candidate of Technical Sciences, Petrov S.V., Doctor of Technical Sciences, Iakymovych M.V.

The Gas Institute of National Academy of Sciences of Ukraine, Kiev

39, Degtyarivska Str., 03113 Kiev, Ukraine, e-mail: zhovt@ukr.net

 

The General Principles of Waste Processing with Recovery of their Energy Potential on the Basis of Plasma Technologies. Part I². Gasification of the Sewage Sludge of Wastewater Treatment Plants

 

The work is dedicated to the development of technologies for processing of carbon-containing hazardous waste, in first of all — the sewage sludge of wastewater treatment plants, based on the use of plasma energy sources. The aim was to enhance prospects of their use on the basis of opportunities for commercialization of the proposed technology. In accordance with the thermodynamic approach proposed in the first part of this paper, evaluate performance of the facilities of gasification based on the use of plasma-steamevaluate performance of the facilities of gasification based on the use of plasma-steam technology depending on the power used by the plasma torches as well as their energy efficiency was performed. It is shown that in the stoichiometric mode of the synthesis gas production the energy costs of the gasification process are close to the level of the synthesis gas energy to be obtained. This provides good preconditions for high energy efficiency of processing of various wastes of similar composition in conditions of mobile equipments, as practically eliminated the need for additional sources of energy. In the mode of additional introduction of oxygen in gasification process, the consumption of synthesis gas for own needs equipments, is about 30 %. The rest can be used for the production of electricity to external consumers that will promote commercialization of development. Thus, in the proposed variant the processing technology correspond to the general idea of numerous publications in the world literature, known as the Waste to Energy. Bibl. 27, Fig. 6, Tab. 5.

Key words: alternative gas fuel, plasma-steam gasification, plasma torch, synthesis gas, hazardous waste, sewage sludge of wastewater treatment plants, vitrification.

 

References

 

1. Zhovtyansky V.A., Petrov S.V., Kolesnyk V.V., Orlyk V.N., Lelyukh Ju.Y., Nevzglyad Y.O., Goncharuk Ju.A., Iakymovych M.V. Conversion of carbonaceous renewable raw materials by using plasma technology, Energotehnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2012, (5), pp. 15–32. (Rus.)

2. Postanovlenie Kabineta Ministrov Ukrainy ot 27 ijulja 2016 g. ¹476 «O gosudarstvennom zakaze na nauchno-tehnicheskie (jeksperimental’nye) razrabotki i nauchno-tehnicheskuju produkciju v 2016 godu».

3. Zhovtyansky V.A., Orlik V.N., Petrov S.V., Iakymovych M.V. [The General Principles of Waste Processing with Recovery of their Energy Potential on the Basis of Plasma Technologies. Part I. Environmental Requirements, the Thermodynamics of the Process and its Energy Efficiency], Jenergotehnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2015, (4), pp. 24–46. (Rus.)

4. Bondar O.I., Lozovic’kyj P.S, Mashkov O.A., Lozovic’kyj A.P. [Ecological state of accumulated sewage sludge in Kiev], Ekologichni nauky, 2014, (7), pp. 38–53. (Rus.)

5. ZhovtyanskyV.A, Dudnyk O.M., Iakymovych M.V. Oderzhannja sintez-gazu z burogo vug³llja ta mulu z vikoristannjam parovogo plazmotrona, Novyny energetyky, 2015, (4), pp. 26–28. (Ukr.)

6. Ravich M.B. [Efficiency of fuel use], Moscow : Nauka, 1977, pp. 258. (Rus.)

7. Zhovtyansky V.A., Iakymovych M.V. Plazmov³ tehnolog³¿ konvers³¿ v³dnovljuval’no¿ sirovini jak priklad vir³shennja problemi pererobki mulovih osad³v st³chnih vod, In: Voden’ v al’ternativn³j energetic ³ ta nov³tn³h tehnolog³jah / Ed. V.V.Skorohoda, Ju.M. Solon³na, Kiev : K²M, 2015, pp. 75–83. (Ukr.)

8. Vatolin N.A., Moiseev G.K., Trusov B.G. [Thermodynamic modeling in high temperature inorganic systems], Moscow : Metallurgy, 1994, 353 p. (Rus.)

9. Prigozhin I., Kondepudi D. [Modern Thermodynamics. From Heat Engines to dissipative structures], Moscow : Mir, 2002, 461 p. (Rus.)

10. Grim G. Spektroskopija plazmy, Moscow : Atomizdat, 1969, 452 p. (Rus.)

11. Drawin H.W. [Validity conditions for local thermodynamic equilibrium], Zeit. fuer Physik, 1969, (228), pp. 99–119. (De)

12. Biberman L.M., Vorob’ev V.S., Jakubov I.T. Kinetika neravnovesnoj nizkotemperaturnoj plazmy, Moscow : Nauka, 1982, 375 p. (Rus.)

13. Zhovtyansky V.A., Lelyuh Yu.²., Tkachenko Ya.V. Vplyv perenesennja vyprominjuvannja na vidhylennja vid rivnovazhnogo stanu shhil’noi’ elektrodugovoi’ plazmy: kryterial’nyj pidhid, Ukrai’ns’kyj fizychnyj zhurnal, 2012, 57 (3), pp. 311–321. (Ukr.)

14. Zhovtyansky V.A. Vplyv faktoriv nerivnovazhnosti na rozpad elektrodugovoji plazmy. 1. Dyfuzijni procesy v objemi plazmy, Ukrainskyj fizychnyj zhurnal,1999, 44 (11), pp. 1364–1370. (Ukr.) 2. Rol’ prystinnyh procesiv, Ukrainskyj fizychnyj zhurnal, 2000, 45 (1), pp. 50–56. (Ukr.) 3. Rol’ vyprominjuvannja i rozshyrennja plazmy, Ukrainskyj fizychnyj zhurnal, 2000, 45 (2), pp. 236–242. (Ukr.)

15. Dobrohotov N.N. Raschet gazogeneratorov i generatornogo processa, Petrograd, 1922, 33 p. (Rus.)

16. Strugovshhikov D.P. Raschet generatornogo gaza po metodu prof. N.N. Dobrohotova, Metallurg, 1929, (1), pp. 30–34. (Rus.)

17. Dobrohotov N.N., Kopytov V.F. Teorija i raschet gazogeneratornogo processa, Teorija i praktika metallurgiji, 1937, 1, pp. 25–40. (Rus.)

18. Deshalit G.I. Raschety processov gazifikacii topliva, Kharkov : Izdatelstvo Khrkovskogo universiteta, 1959, 168 p. (Rus.)

19. Dobrohotov N.N. K dinamike diffuzionnyh processov, Kiev : Izdatel’stvo AN USSR, 1948, 30 p. (Rus.)

20. Ginzburg D.B. Gazifikacija nizkosortnogo topliva, Moscow : Promstrojizdat, 1950, 172 p. (Rus.)

21. Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration waste, Official Journal of the European Communities, 2000, 332, pp. 91–111.

22. Mihajlov B.I. Regeneracija tepla v parovihrevyh jelektrodugovyh plazmotronah. Avtoplazmotrony, Teplofizika i ajeromehanika, 2005, 12 (1), pp. 135–148. (Rus.)

23. Donskoj A.V., Klubnikin V.S., Salangin A.A. Vlijanie dvizhenija gaza na harakteristiki dvuhtempera-turnoj argonodugovoj plazmy v kanale, Zhurnal tehnicheskoj fiziki, 1983, 53 (4), pp. 670–676. (Rus.)

24. Anshakov A.S., Urbah Je.K., Rad’ko S.I., Urbah A.Ye., Faleev V.A. Parovodjanoj plazmotron dlja gazifikacii tverdyh topliv, 8th Vserossijskaja konferencija s mezhdunarodnym uchastiem «Gorenie tverdogo topliva» (Novosibirsk, 13–16 nojabrja 2012 g.), Novosibirsk : Institut teplofiziki im. S.S.Kutateladze SO RAN, 2012, pp. 61–64. (Rus.)

25. Verbovskij V.S. Vozmozhnosti primenenija gazodizel’nyh jelektrostancij v Ukraine, Jekotehnologii i resursosberezhenie [Ecotechnologies and Resource Saving], 2003, (1), pp. 13–18. (Rus.)

26. Leal-Quiros E. Plasma Processing of Municipal Solid Waste, Brazilian Journal of Physics, 2004, 34 (4B), pp. 1587–1593.

27. Dudnyk A.N. Napravlenija ispolzovanija i razvitija energeticheskih ustanovok na toplivnyh elementah, Teplovaja energetika / Ed. P.Omeljanovskogo, I.Mysaka, L’vov : Ukr. tehnolog³¿, 2010, pp. 346–358. (Ukr.)

 

Onopa L.R., Pyatnichko A.I., Candidate of Technical Sciences, Zhuk G.V., Doctor of Technical Sciences, Ivanov Yu.V.

The Gas Institute of the National Academy of Sciences of Ukraine, Kiev

39, Degtyarivska Str., 03113 Kiev, Ukraine, e-mail: l_benush@mail.ru, aipkiev@ukr.net

 

Natural Gas Internal Energy Using for Helium Concentrate Recovery from it

In connection with development of hi-tech productions that use helium, there is strong growth of its consumption in the world. Taking into account limited resources for the helium production in Ukraine there is a reason to extract it from natural gas at the gas-distribution stations of main gas pipelines or gas fields containing it more than 0,05 % (vol.). The offered cryogenic technology of helium concentrate recovery does not require external cold source, cooling takes place due to a throttling and cold recovery of liquefied natural gas backflow. The obtained raw helium contains 60–70 % He, its losses are 1–3 % because of dissolution in the liquefied natural gas. The optimal pressure range for helium extraction in stripping column is 2–2,4 ÌPà. A helium concentrate can be transported in balloons or processed in place to refinå it further and obtain end product. The calculations of process flowsheet were carried out using software system GasCondOil. The reliability of calculations has been confirmed by comparison with experimental data on solubility of helium in methane. Bibl. 10, Fig. 7, Tab. 3.

Key words: helium, liquefied natural gas (LNG), gas-distributing station, low-temperature condensation, stripping column.

 

References

 

1. Jakuceni V.P. [Conventional and perspective application of helium], Neftegazovaja geologija. Teorija i praktika [Oil and gas geology. Theory and practice], 2009, (4), pp. 1–13. (Rus.)

2. [World and Russian markets of helium]. — [Electronic resource]: http://www.gazprom.ru /f/posts/50/ 836760/gazprom-journal-2012-03.pdf

3. Corporate magazine «Gazprom», 2012, (3). — [Electronic resource]: http://ukrchem.dp.ua/ 2012/03/26 /mirovoj-i-rossijskij-rynki-geliya-2009-2010-gody.html (Rus.)

4. Nikolaev V.V., Busygina N.V., Busygin I.G. [Basic processes of the physical and physicochemical gas processing], Moscow : Nedra, 1998, 184 p. (Rus.)

5. Kravchenko M.V., [The non-cryogenic method of an extraction of helium from natural gas], Tekhnicheskie gazy [Industrial Gases], 2015, (1), pp. 18–25. (Rus.)

6. Simonenko Ju.M. [Cryogenic methods of helium recovery from atmosphere], Holodil’na tehn³ka ta tehnolog³ja [Refrigeration Engineering and Technology], 2014, (2), pp. 64–70. (Rus.)

7. Lukin A.E., Dovzhok E.I., Knishman A.Sh., Goncharenko V.I., Dzjubenko A.I. [Helium anomaly in petroliferous Visean carbonate reservoirs of the Dnieper-Donets Depression], Dopov³d³ NAN Ukra¿ni [Reports of the National Academy of Sciences of Ukraine], 2012, (7), pp. 97–104. (Rus.)

8. Process Simulation Software for Natural Gas and Oil Engineering «GasCondOil». — [Electronic resource]: http://gascondoil.com (Rus.)

9. Devaney W.E., Rhodes H.L., Tully P.C. [Phase equilibria data for helIum-methane system], J. Chem. Eng. Data, 1971, 16 (2), pp. 158–161.

10. Heck C.K., Hiza M.J. [Liquid-vapor equilibrium in the system helium-methane], A.I.Ch.E. Journal, 1967, 13 (3), pp. 593.

 

Chernysh Ye.Yu., Candidate of Technical Sciences

Sumy State University, Sumy

2, Rymskogo-Korsakova Str., 40007 Sumy, Ukraine, e-mail: e.chernish@ssu.edu.ua

 

Modeling Oxidative Capacity of Biofilm Immobilized on Granular Phosphogypsum During Gas Purification

 

The article focused on the modeling of biofilm oxidative capacity under immobilization of sulfur-oxidizing microorganisms groups on phosphogypsum granules in the bio-desulphurization system. The oxidizing capacity of the biofilm was described, that included the basic parameters of bacterial growth kinetics, taking into account regime parameters of bio-desulfurization process and characteristics of phosphogypsum granular support. The results of mathematics modelling are consistent with experimental data corresponding to the dynamics reduce the concentration of hydrogen sulfide in the gas stream exiting the biofilter. The further development of environmentally safe approach to the use of phosphogypsum was determined as a mineral carrier for the development of the association of sulfur-oxidizing microorganisms. These investigations allow optimization of the gas purification and predicting of the dynamics of hydrogen sulfide removal under various modes of bio-desulfurization system load. Bibl. 13, Fig. 3.

Key words: oxidative capacity, biofilm, mineral carrier, phosphogypsum, gas purification.

 

References

 

1. Kozhushko, V.P., [Hydrophobisation of articles from gypsum binders is one of the expansion of their using in construction], Vestnik Har’kovskogo nacional’nogo avtomobil’no-dorozhnogo universiteta, 2005, (29), pp.83–86. (Rus.)

2. Mirka, G.E. and Rudoi, N.G. [Problems of technogenic waste recycling industry Sumy region], Proceedings of the 3rd International Conference «Cooperation for Waste Issues», Kharkov, 7-8 Feb. 2006, Kharkov, 2006, pp. 101–102. (Rus.)

3. Degirmenci, N., Okucu, A. and Turabi, A. Application of phosphogypsum in soil stabilization, Building and Environment, 2007, 42 (9), pp. 3393–3398.

4. Manzhina S.A., Denisov V.V., Denisova I.A. [Using of large-scale waste phosphogypsum to reduce emissions of SO2-containing coal power plant], Engineering Journal of Don, 2014, 28, Iss. 1, pp. 77–87. (Rus.)

5. Bulat A.F., Ivanov V.A., Holov K.S., Mysovets Yu.V. [Radio-protective properties of phosphogypsum binding agent with rare-earth filler ], Scientific Bulletin of National Mining University, 2010, (5), pp. 48–51. (Ukr.)

6. Plyatsuk, L. and Chernysh, Ye., Intensification of the anaerobic microbiological degradation of sewage sludge and gypsum waste under bio-sulfidogenic conditions, The Journal of Solid Waste Technology and Management (USA), 2014, 40 (1), ðð. 10–23.

7. Chernysh Ye.Yu. [Application of phosphogypsum in the ecotechnology of gas purification with elemental sulfur formation], Ehkologicheskij vestnik, 2015, (1), ðð. 73–79. (Rus.)

8. Chernysh Ye.Yu., Yakhnenko E.N. [Determination of regime parameters of heavy loaded of biodesulfurization system with phosphogypsum using], Bulletin of NTU «KhPI». Series: New solutions in modern technologies, 2016, (12), pp. 207–212, doi:10.20998/2413-4295.2016.12.31. (Rus.)

9. Pat. 0845288 EP, Int. Cl.6 B 01 D 53/84, C 10 L 3/10. Process for biologica lremoval of sulphide, A.J.H. Janssen, C.J.N. Buisman, Publ. 03.06.98, Bul. 1998/23.

10. Park Byoung-Gi, C., Won, S., Shin and Chung, J. S., Simultaneous Biofiltration of H2S, NH3 and Toluene using an Inorganic Polymeric Composite, Environ. Eng. Res., 2008, 13 (1), pp. 19–27.

11. Ramirez, M., Gómez, J. M. and Cantero D. Removal of hydrogen sulphide by immobilized Thiobacillus thioparus in a biofilter packed with polyurethane foam, Bioresource Technology, 2009, 100, Iss. 21, pp. 4989–4995.

12. Namgung H.-K. and Song Ji Hyeon. The Effect of Oxygen Supply on the Dual Growth Kinetics of Acidithiobacillus thiooxidansunder Acidic Conditions for Biogas Desulfurization, Int. J. Environ. Res. Public Health, 2015, (12), ðð. 1368–1386.doi:10.3390/ijerph120201368

13. Vollertsen, J., Nielsen, A.H., Jensen, H.S., Rudelle, E.A. and Hvitved-Jacobsen, T. Modeling the corrosion of concrete sewers, Materials of 12th International Conference on Urban Drainage, Porto Alegre, Brazil, 11–16 Sept. 2011. — Available at: https://web.sbe.hw.ac.uk/staffprofiles/bdgsa/t emp/12th%20ICUD/PDF/PAP005127.pdf

 

Volchyn I.A., Doctor of Technical Sciences,

Raschepkin V.A., Candidate of Technical Sciences

Coal Energy Technology Institute of National Academy of Sciences of Ukraine, Kiev

19, Andriivska Str., 04070 Kiev, Ukraine, e-mail: ceti@i.kiev.ua

 

Assessment of Acoustic Waves Attenuation in the Dusted Flows in the Boilers of Thermal Power Plants

 

The analysis of the physical mechanisms of attenuation of acoustic waves in the dusted gas stream is presented. The comparative assessment of the impact of various possible mechanisms of attenuation of acoustic waves on the effectiveness of sound cleaning of dusted surfaces of equipment placed in the ducts of thermal power plants was made. Wave attenuation coefficients were calculated, in the flow of flue gases, and at vicinity of solid surfaces in the wide frequency band of acoustic waves. Attenuation of waves in a duståd gas flow at relatively low frequencies is significantly higher than attenuation of acoustic waves in the clean gas. Calculations confirmed presence of anomalous attenuation of acoustic waves by the dust particles suspended in a gas flow in a range of sizes PM10
(< 10
ìm). Calculations were performed to account polydispersity of dust particles, based on of the actual distribution of fly ash particle size distribution downstream the boiler of coal-fired thermal power plants. Numerical evaluation was performed, on the changes of the sound pressure of acoustic waves in the infrasonic range in a dusted gas stream. Bibl. 33, Fig. 4.

Key words: sound cleaning, acoustic waves, fly ash.

 

References

 

1. Clyde Bergemann GmbH. Wesel, Germany. — Rezhim dostupa: https:// www.cbpg.com

2. Wikipedia, the free encyclopedia. — Rezhim dostupa: https://en.wikipedia.org/wiki/Acoustic_ cleaning.

3. Klessmaa Yu. [On the use of acoustic surface cleaning systems of heat boilers for thermal power], Energetika i Elektrificaciya [Journal of Energy and Electrification], 2000, ¹ 9, pp. 40–43. (Rus.)

4. Tikma T. Acoustic cleaning of boilers]. Ecotechnologii i Resursosberezhenie [Ecotechnologies and Resource Saving], 2002, (1), pp. 71–74. (Rus.)

5. Kokum Sonics Intl. — Access mode: http:// www.kockumsonics.com

6. Infrafone. — Access mode: http://www.infrafone.se.

7. BHA. Sonic Horn Monitoring. ORBIT, 2005, 25, (3), pp. 44–40.

8. Zimon A.D. [Adhesion of dust], Moscow : Chemistry, 1967, 372 p. (Rus.)

9. Kinsler L.E., Frey A.P., Coppens A., Sanders J.V. Fundamentals of Acoustics, N.Y . : John Willey & Sons, 1982, 480 p.

10. Zimon A.D., Andrianov E.I. [Autohesion of bulk materials], Moscow : Metallurgy, 1978m, 288 p. (Rus.)

11. Schulze D. Measuring Powder Flowability: A Comparison of Test Methods. Part I, Powder Bulk Engineering, 1996,10 (4), pp. 45.

12. Lumay G., Boschini F., Traina K., Bontempi S., Remy J.-C., Cloots R., Vandewalle N. Measuring the flowing properties of powders and grains, Powder Technology, 2012, 224, pp. 19–27.

13. Kandula M., Lonergan M. Spectral Attenuation of Sound in Dilute Suspensions with Nonlinear Particle Relaxation, Conference paper. NASA Center for Aerospace Information (CASI). — Acoustics ‘08: 06/29 - 07/04/2008, 7 p.

14. DeLoach R. On the excess attenuation of sound in the atmosphere, NASA Technical Note (NASA-TN-D-7823). Langley Research Center, NASA Administration, Washington D.C., 1975, 74 p.

15. Knudsen V.O. The absorption of sound in air, in oxygen, and in nitrogen. — Effects of humidity and temperature, J. Acoust. Soc. Amer, Oct. 1933,V, (2), pp. 112–121.

16. Coles G.M. Atmospheric Absorption of Noise. Aerodynamic Noise, Univ. of Toronto Press, 1989, pp. 209–227. 17. Henley D.C., Hoidale G.B. Attenuations and dispersion of acoustic energy by atmospheric dust, J. Acoust. Soc. Amer., 1973, (54), pp. 437–445.

18. Delsasso L.P., Leonard R.W. The attenuation of sound in the atmosphere, Summary Report U.S. Air Force Contract W-28-099-AC-228. Univ. of California, Feb. 25, 1953.

19. Burkhard M.D., Karplus H.B., Sabine H.J. Sound Propagation Near The Earth’s Surface As Influenced By Weather Conditions, WADC Tech. Rep. 57-353, Part II, U.S. Air Force. — Dec. 1960.

20. Zink W., Delsasso L.P., Cox C.J. Attenuation and dispersion of sound by solid particles suspended in gas, Contract 51-0796, Dept. Phys., Univ. of California, 1957.

21. Landau L.D., Lifshitz E.M. [Hydrodynamics]. Vol.VI, Moscow : Nauka, 1986, 736 p. (Rus.)

22. Korchevoi Yu.P., Raschepkin V.A. [Amplification of the acoustic waves at reflection from the electrodes in the gas discharge in the atmospheric pressure], Tehn³chna elektrodinam³ka [Technical Electrodynamics], 2001, (2), pp. 6–10. (Rus.)

23. Krasilnikov VA, Krylov V.V. [An introduction to physical acoustics], Moscow : Nauka, 1984, 400 p. (Rus.)

24. Nigmatulin R.I. [The dynamics of multiphase media]. Vol. 1, Moscow : Nauka, 1987, 464 p. (Rus.)

25. Temkin S., Dobbins R.A. Measurement of attenuation and dispersion of sound by aerosol, J. Acoust. Soc. Amer., 1966, 40, (5), pp. 1016–1024.

26. Norum T.D. Reductions in multi-component jet noise by water injection, AIAA-2004-2976, 101 / I AIAA / CEAS Aeroacoustics Conference, Manchester, Great Britain, May 2004.

27. Langlois V., Xiaoping Jia. Sound Pulse Broadening In Stressed Granular Media, Physical Review, 2015, E 91, pp. 022205-1-022205-8.

28. Belousov V.V. [Theoretical basis of processes of gas purification], Moscow : Metallurgy, 1988, 256 p. (Rus.) 29. Kropp A.I., Akbrut L.I. [Ash collectors with Venturi tubes in thermal power plants], Moscow : Energia, 1977, 460 p. (Rus.)

30. Perry R.H., Green D.W. Perry’s Chemical Engineers’ Handbook, The Mac-Grow Hill Companies, Inc, 1999, 2582 p.

31. Babinsky E., Sojka P.E. Modelling drop size distributions, Progress in Energy and Combustion Science, Pergamon Press, 2002, 28, pp. 303–329.

32. Brekhovskikh L.M. [Waves in The Layered Media], Moscow : Publishing USSR Academy of Sciences, 1957, 502 p. (Rus.)

33. Landau L.D., Lifshitz E.M. [The theory of elasticity]. Vol. VII, Moscow : Nauka, 1987, 246 p. (Rus.)

 

Kushneruk V.I., Candidate of Technical Sciences, Braverman V.Ya., Candidate of Technical Sciences,

Bukraba M.A., Candidate of Technical Sciences, Chelidze D.I.

PE «Research Institute «STORM», Odessa

27, Tereshkova Str., 65078 Odessa, Ukraine, e-mail: shtorm_soj@ukr.net

 

Thermal-Physical Design of Paraffin-Based Heat Accumulator

 

Currently, analytical and calculated design is being performed for heat-retaining cell of wax that can give up the accumulated during the «nighttime tariff» heat within 8 ... 9 hours. The choice of a cylindrical form for the heat-retaining cell is being validated; cell body is made of a thin-walled metal, the sell is filled with heat-retaining substance - paraffin by 70% of volume and is covered with lid. Based on calculations, comply with the methods of transient heat conduction, the diameter and the height of cylindrical shape cells of wax were defined, which are chosen equal and reach 130–135 mm for the period of «nighttime tariff». Design results have been confirmed experimentally and can be applied to develop paraffin-based heat accumulators in heating systems based on heat pumps for spaces, operating as offices. Bibl. 5, Fig. 2.

Key words: heat accumulator, paraffin, nighttime tariff, heat pump, cell.

 

References

 

1. Zaitsev O.M., Petrenko V.O., Petrenko A.O. [Cost cutting of energy resources of life support systems through the application of natural heat accumulators], [Construction and technogenic safety], 2012, Iss. 41, pp. 91–103. (Rus.)

2. Enhancing the effectiveness of microclimate support systems in industrial buildings, CSRI of industrial buildings , Ed. board S.N. Bulgakov and other, Moscow, 1991, pp 113. (Rus.)

3. Levenberg V.D., Tkach M.R., Golstrem V.A. [Heat accumulation], Kiev : Technika, 1991, pp. 49–74. (Rus.)

4. Sharma A., Tyagi V., Chen C., and others, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, 2008, 497, pp. 1–28.

5. Isachenko V.P., Osipova V.A., Sukomel A.S. [Thermal transfer process], Moscow : Energoizdat, 1981, pp. 416. (Rus.)