Energy Technologies and Resource Saving, 1-2017

 

Soroka B.S., Doctor of Technical Sciences, Professor, Horupa V.V.

The Gas Institute of National Academy of Sciences of Ukraine, Kiev

39, Dehtyarivska Str., 03113 Kiev, Ukraine, e-mail: boris.soroka@gmail.com

Analysis of the Process of Water Vapor Condensation within Gas Atmospheres and Combustion Products

Water vapor is the most important working medium by the processes of energy generation and conversion. The H2O content in gases and gas mixtures serves as a standard of their desiccation by technological processes. The presence of vapor in the air-oxidizer provides a reduction of harmful substances formation by combustion. The values characterizing the saturation state: the dew point tdew and the wet bulb thermometer twb temperature are used to evaluate an approximation degree of the wet gas system (any air, gas mixtures or combustion products) to the condensation state. The values of these parameters have been determined for moist air in dependence on the basic temperature and the relative humidity of an air. The lower are the temperature values tdew, twb, the wider is the region of H2O existence in the vapor phase. The EUROSTATs gas fuels list includes the natural gas (NG), blast furnace gas (BFG), coke oven gas (COG). Calculations of dew point values of the combustion products for the gas fuels: NG, COG, BFG has been carried out in dependence on the characteristics of the combustion air: the oxidizer excess factor l, the temperature ta and the relative humidity ja. The dew point tdew values have been found under standard conditions for the combustion products of the listed gas fuels, presented by stoichiometric (l = 1.0) mixtures with dry air: pure methane, NG, COG, BFG. The tdew values make respectively 59.3; 58.5; 11.1; 61.5. In the case of saturated air as an oxidizer at temperature of 25 C, the dew point for the combustion products of the listed fuels makes the folloving values: 62.0; 61.5; 25.6; 64.0 C respectively. The fractions of H2O in the vapor and liquid phases of natural gas combustion products are determined as a function of temperature by condition that the 100 % content of H2O in from of vapor state (without water) corresponds to the saturation temperature (or dew point).This temperature has value of about 60C for combustion products under stoichiometric air/gas ratio. Bibl. 31, Fig. 10, Tab. 3.

Key words: atmospheric combustion air (oxidant), moisture content of combustion products, absolute air humidity, relative air humidity, blast furnace gas, coke oven gas, combustion products, dew point natural gas, wet bulb temperature.

 

References

1. Soroka B.S., Zgurskyi V.O, Khinkis M.Ya. Nizkoemissionnoye szhiganiye podgotovlennykh gazo-vozdushnykh smesey v kamere s retsirkulyatsiyey produktov sgoraniya [Low-emission burning of premixed gas-air mixtures in the chamber by combustion products recirculation], Sovremennaya Nauka Issledovaniya, Idei, Rezultaty, Tekhnologii, 2013, (1), pp. 368374. (Rus.)

2. Energy balance sheets data 2012. Eurostat statistical book. Luxembourg, 2015.

3. Naftogaz opublikuvav osnovni pokazniki diyalnosti gazovogo rinku Ukraini za 2016 rik. [Online resource]. Access mode: http://www. naftogaz.

com. (Ukr.)

4. GlushkoV.P., Gurvich L.V., BergmanG.A. Tablitsy termodinamicheskikh svoystv [Tables of thermodynamic properties], Moscow : Nauka, 1978, 327 p. (Rus.)

5. Vilyams F.A. Teoriya goreniya [Theory of combustion], Moscow : Nauka, 1971, 616 p. (Rus.)

6. Prokhorov A.M. Fizicheskiy entsiklopedicheskiy slovar [Physical encyclopedic dictionary], Moscow : Sovetskaya entsiklopediya, 1984, 944 p. (Rus.)

7. Lukanin V.N., Shatrov M.G., Kamfer G.M. Teplotekhnika [Heat engineering], Moscow : Vysshaya shkola, 2005, 671 p. (Rus.)

8. Kuhling H. Spravochnik po fizike [Handbook of Physics], Moscow : ir, 1982, 520. (Rus.)

9. Magadeyev V.Sh. Korroziya gazovogo trakta kotelnykh ustanovok [Corrosion of the gas path of boiler plants], Kiev : Energoatomizdat, 1986, 272 p. (Rus.)

10. Sosnin Yu. P., Bukharkin Ye. N. Bytovyye pechi, kaminy i vodonagrevateli [Household stoves, fireplaces and water heaters], Kiev : Stroyizdat, 1985, 368 p. (Rus.)

11. Zakharenko-Berezyanskaya Yu. A. Ukrainskiy rynok kondensatsionnykh kotlov. Tendentsii i perspektivy. [Ukrainian market of condensing boilers. Trends and prospects], S, 2005, (9), pp. 1016. (Rus.)

12. Barabash V.P. Energeticheskaya effektivnost kondensatsionnykh kotlov [Energy efficiency of condensing boilers], Nova tema, 2012, (2), pp. 5558. (Rus.)

13. Directive 2009/125/EC: of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products. [Web resource]. Access mode: http://eur-lex.europa.eu

14. Tarabanov M.G. Vlazhnyy vozdukh. [Humid air], Moscow : Avok press, 2004, 42 p. (Rus.)

15. Humidity calculations and conversions made easy. [Web resource]. Access mode: http://www. vaisala.ru/ru/support/HumidityCalculator/Pages /default.aspx.

16. Gillan L. Maisotsenko cycle for cooling processes, Int. J. on Energy for a Clean Environment (Clean Air), 2008, 9, pp. 4764.

17. Jenkins P., Cerza M., Saaid M. Al. Analysis of using the M-cycle Regenerative-Humidification Process on a Gas Turbine, Jenkins Proceedings of ASME Turbo 2014 GTI, Dusseldorf, Germany, June 1620, 2014, 9 p.

18. Guillet R. The humid combustion to protect environment and to save the fuel: the water vapor pump and Maisotsenko cycles examples, Int. J. on Energy for a Clean environment, 2011, 12, pp. 259 271.

19. Soroka B.S. Ispolzovaniye alternativnykh gazov s tselyu ekonomii prirodnogo gaza pri otoplenii vysokotemperaturnykh agregatov [Use of alternative gases for the purpose of saving natural gas in heating high-temperature aggregates], Vidnovlyuvalna energetika, 2010, (1), pp. 517. (Rus.)

20. Soroka B.S., Korniyenko A.V. Ispolzovaniye alternativnykh gazov s tselyu ekonomii prirodnogo gaza pri otoplenii vysokotemperaturnykh agregatov. Chast 2. Opredeleniye energeticheskikh kharakteristik alternativnikh gazovikh topliv v usloviyakh zameshcheniya prirodnogo gaza [Use of alternative gases to save natural gas when heating high-temperature units. Part 2. Determination of the energy characteristics of alternative gas fuels under conditions of substitution of natural gas], Vidnovlyuvalna energetika, 2011, (4), pp. 6275. (Rus.)

21. Anne Giese, Huseyin Yalmaz, Jorg Leicher, Eren Tali. Development of a multi-fuel burner for operation with light oil, natural gas and low calorific value gas, Heat Processing, Nov. 2013, 11, Iss. 4, pp. 4956.

22. Karp I.N., Soroka B.S., Dashevckiy L.D., Semernina S.D. Produkty sgoraniya prirodnogo gaza pri vysokikh temperaturakh [Products of combustion of natural gas at high temperatures], Kiev : Tekhnika, 1967, 382 p. (Rus.)

23. Yavorskiy B.M., Seleznev Yu.A. Spravochnoye rukovodstvo po fizike [Reference manual on physics], Moscow : Nauka, 1989, 576 p. (Rus.)

24. Stabnikov V. N., Lisyanskiy V. M., Popkov V. D. Protsessy i apparaty pishchevykh proizvodstv Lisyanskiy [Processes and devices of food production], Moscow : Agropromizdat, 1985, 503 p. (Rus.)

25. Sascha Eppensteiner. Bright annealing technology for higt-alloyed steel strip a comparison of concepts, Heat Processing, Nov. 2015, 13, Iss. 4, pp. 4550.

26. Guide to Meteorological Instruments and Methods of Observation. [Online resource]. Access mode: https://www.wmo.int/pages/prog/gcos /documents/ gruanmanuals/CIMO/CIMO_Guide-7th_Edition-2008.pdf

27. Sosnin Yu. P. Kontaktnyye vodonagrevateli [Contact water heaters], Moscow : Stroyizdat, 1974, 359 p. (Rus.)

28. Ahmad Al-Halbouni, Anne Giese, Jord Leicher, Klaus Gorner, Dieter Schillingmann, Hartmut Schillingmann, Christian Huwelmann, Burner system using entrained hot pypolysis gas from biomass, Heat Processing, Nov. 2015, 13, Iss. 4, pp. 6974.

29. Bondarenko B. I., Soroka B. S., Bezugliy V. K. Mezhfaznyy uglerodoobmen: termodinamika i protsessy perenosa [Interphase carbon exchange: thermodynamics and transport processes], Kiev : Naukova dumka, 2013, 209 p. (Rus.)

30. Flue gas dew point temperatures. [Online resource]. Access mode: http://www.engineeringtoolbox.com/dew-point-flue-gases-d_1583.html

31. Ber G. D. Tekhnicheskaya termodinamika [Technical thermodynamics], Moscow : Mir, 1977p. (Rus.)

 

Bezrodnyi M.K., Doctor of Technical Sciences, Professor, Prytula N.A., Candidate of Technical Sciences, Gobova ..

National Technical University of Ukraine Igor Sikorsky Kiev Polytechnic Institute, Kiev

37, Pobedy Ave., 03056 Kiev, Ukraine, e-mail: m.bezrodny@kpi.ua

Optimal Working Conditions of the Ground Source Heat Pump for Heat Supply

The method of determination of optimal working conditions of vertical ground heat exchanger for heat pump low temperature water heating system, providing minimum energy cost for heat production is presented in this article. It was determined that there is an optimum speed of a heat carrier to which minimum total cost of electricity for heating system in a whole corresponds when using vertical probes for heat pump heating system. The correlation between the characteristics of vertical ground heat exchanger (depth of the well, the intensity of selection of heat from the soil pipe diameter, the velocity of a heat carrier) in its optimal working conditions was found. It is shown that the optimum velocity of a heat carrier in the lower circuit depends on the depth of the well, the heat exchanger tube diameter, and is almost independent of temperature conditions works of heat pump systems. It is found that the higher velocity observed at the beginning of the heating period in view of energy storage in the ground. Optimum coolant velocity should decrease until the end of the heating season to ensure minimum specific energy expenditure at HPS. Also noted that an optimum velocity increases with increasing depth of the well and with decreasing diameter of the heat exchanger tube. The established correlation may be used when determining the optimum operating conditions of the vertical ground heat pump heat exchanger low-temperature heating systems with a plan to maximize their energy efficiency. Bibl. 8, Fig. 7.

Key words: heat pump, vertical ground heat exchanger, low temperature heating system, the minimum unit cost of external energy.

 

References

1. Belyaeva T.G. [Heat transfer in the system U-shaped heat exchanger ground in the processes of accumulation and extraction of heat], Promyshlennaja teplotehnika, 2013, (1), pp. 7279. (Rus.)

2. Bezrodny M.K., Prytula N.O. [Thermodynamic and energy efficiency of heat pump heating circuits: monograph], Kiev : Polytechnic, 2016, 272 p. (Ukr.)

3. [Engineering equipment of buildings and structures. Design of heating buildings with heat pumps], Effective as of 01.09.2010, Kiev : Ukraine Ministry of Regional Development, 2010, 52 p. (Ukr.)

4. Kordas O., Nikiforovich E.I. [Simulation of the energy characteristics of the geothermal systems], Prykladna gidromehanika, 2014, (1), pp. 4252. (Rus.)

5. Bezrodny M.K., Puhovyj I.I., Kutra D.S. [Heat pumps and their use], Kiev : NTUU KPI, 2013, 312 . (Ukr.)

6. Oborudovanie WILO. Access mode. http:// www.wilo.ua/cps/rde/xchg/ua-ua/layout.xsl/index.htm. (Rus.)

7. [Thermophysical properties of an aqueous solution of ethylene glycol]. Access mode. http://www. dpva.info/Guide/GuideMedias/Antifreeze/MEGwaterProperties/(Rus.)

8. Gershkovich V.F. [Some of the American experience in the design of heat pumps], Teploviey Nasosy[eat Pumps], 2011, (1), pp. 1219. (Rus.)

 

Snigur A.V., Prazhennik Yu.G., Marchuk Yu.V., Candidate of Technical Sciences, Bondarenko B.I., Academician of NAS of Ukraine, Doctor of Technical Sciences, Professor

The Gas Institute of National Academy of Sciences of Ukraine, Kiev

39, Degtyarevskaya Str., 03113 Kiev, Ukraine, e-mail: umarch@i.com.ua

Thermodynamic Modeling of Solid Fuel Combustible Weight Gasification Processes

As a model of unconventional fuels combustible mass composition and properties, averages of municipal solid waste (MSW), components of their morphological structure and their derivatives RDF, SRF Ukrainian origin and different world regions are selected. The reference data array: adiabatic equilibrium products state indicators of oxygen and steam-oxygen gasification of municipal solid waste components morphological composition, averages combustible mass of solid waste MSW, RDF, SRF for a given equilibrium parameters: T = 298.15 K, p = 0.1 MPa, depending on the ratio of combustible mass : oxidant mass is calculated. Coefficient a value for different by Q solid waste groups and other low grade fuels optimally gasification mode is determined. Bibl. 22, Fig. 3, Tab. 9.

Key words: gasification, calorific value, combustible mass, municipal solid waste.

 

References

1. Lars Sorum. Characterisation of MSW for Combustion System. Technical Report. Sintef Energy Research, Norway, 2001. [Online Resource]. Access mode: http://www.energy.sintef.no

2. Joop van Tubergen, Essent Milieu, Dr. Thomas Glorius, RWE Umwelt, Eric Waeyenbergh, Scoribel, Classification of Solid Recovered Fuels, February 2005. [Online Resource]. Access mode: http://erfo. info /fileadmin/user_ upload/erfo/documents/standardisation/ Classification_report.270205.pdf

3. Determining the Chemical Composition of Solid Waste. University of Central Florida, USA. 2001. Last updated July 2004 by Dr. Reinhart. [Online Resource]. Access mode: http://msw.cecs.ucf.edu/Exercise-Chem-composition.pdf

4. Metodicheskie ukazanija po raschetu vybrosov zagrjaznjajushhih veshhestv v atmosferu ot musoroszhigatelnyh i musoropererabatyvajushhih zavodov, Moscow :

Ministerstvo ZhKH RSFSR, 1989. [Online Resource]. Access mode: http://www. opengost. ru/iso/13_gosty_iso/13040_gost_iso/1304040_ gost_iso/3763

5. Shmarin S.L., Gushha E.P., Ogorodnik S.S., Hoffmann M., Mihajlenko V.P., Martin G.G., Zhuravel E.V. Dinamika izmenenija morfologicheskogo sostava tverdyh bytovyh othodov v Kievskoj oblasti, Mzhnarodna naukovo-praktichna konferencja Stale upravlnnja TPV v Shdnj Evrop : Perspektivi na majbutne, Kiev, 1920 May 2011, Kiev, 2011. (Rus.)

6. Programa Chiste msto, m. Mikolaev, 2007. [Online Resource]. Access mode: http:// www.rtpp.com.ua/4business/13/291.html

7. Tharaka Rama K., Chowdary Doddapaneni, Dhipankumar Kanagasabapathi, Reaction Kinetics of Tropical Biomass. University of Boras, School of Engineering, Boras, Sweden, Jan. 2012 to Aug. 2012. Boras, 2012.

8. Shubov L.Ja., Stavrovskij M.E., Shehirev D.V. Tehnologija othodov (tehnologicheskie processy v servise), oscow : Mgus, 2006, 411p. (Rus.)

9. Anurag Gard, Richard Smith, Daryl Hill, Nigel Simms, Simon Pollard. Wastes as Co-Fuels: The Policy Framework for Solid Recovered Fuel (SRF) in Europe, wit: UK Implications, Environmental Science & Technology, 2007, 41 (14), pp. 48684874. Access mode: http://pubs.acs.org/doi/full/10.1021/es062163e

10. Michael Becidan. Experimental Studies on Municipal Solid Waste and Biomass Pyrolysis. Thesis for the degree of doctor philosophy. Trondheim : Norwegian University of Science and Technology. 2007. Access mode: http://www.divaportal.org /smash/get/diva2:122892 /FULLTEXT01.pdf

11. Gidarakos E., G. Havas, P. Ntzamilis. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete, 2005. Access mode: http://www.seas.columbia.edu/earth/wtert/sofos /Gidarakos_Counrty%20 report.pdf

12. Pljaskina N.I. Ocenka jenergeticheskogo potenciala utilizacii tverdyh bytovyh othodov (na primere novosibirskoj oblasti). VIII Vserossijskaja konferencija s mezhdunarodnym uchastiem Gorenie tverdogo topliva, Novosibirsk (Rossia) 1316 nojabrja 2012 g., Novosibirsk, 2012. (Rus.)

13. Sertifkat 22 genetichnih, tehnologchnih ta jaksnih harakteristik na vuglnu produkcju VSP Shahta Stepova VAT Pavlogradvugllja DP UkrNIIugleobogashhenie , m. Lugansk, 1.01.2010. (Ukr.)

14. Sertifkat 24 genetichnih, tehnologchnih ta jaksnih harakteristik na vuglnu produkcju VSP Shahta Juvlejna VAT Pavlogradvugllja DP UkrNIIugleobogashhenie, m. Lugansk, 1.01.2010. (Ukr.)

15. Tehnologicheskie svojstva ishodnyh i obogashhennyh uglej, Harkv : DPROKOKS, 2013.

16. Hoffman E. Jenergotehnologicheskoe ispolzovanie uglja, Moscow : Jenergoatomizdat, 1983, pp. 328. (Rus.)

17. Saranchuk V.I., Oshovskij V.V., Vlasov G.A. Fiziko-himicheskie osnovy pererabotki gorjuchih iskopaemyh, Doneck : Doneckij gosudarstvennyj tehnicheskij universitet, 2001.

18. Gazogeneratory. [Online Resource]. Access mode: http://gazogenerator. com/effektivnostispolzovaniya-topliva/podschet-teploty-sgoraniya

19. Sovremennye problemy i perspektivy racionalnogo lesopolzovanija v uslovijah rynka. Materialy Mezhdunarodnoj nauchno-tehnicheskoj konferencii molodyh uchenyh i specialistov, Sankt-Peterburg, Russia, 1011 Nov., 2011. [Online Resource]. Access mode: http://spbftu.ru/UserFiles/smuconf_2011.pdf

20. Snigur A.V., Prazhennik Yu.G., Trusov B.G., Marchuk Yu.V., Nebesnyi A.A., Bondarenko B.I. [Thermodynamic Analysis of Oxygen Gasification of Water-Graphite Mixtures], Energotechnologii i resursusberezhenie [Energy Technologies and Resource Saving], 2014, (2), pp. 2533. (Ukr.)

21. Snigur A.V., Prazhennik Yu.G., Trusov B.G., Marchuk Yu.V., Nebesnyi A.A., Bondarenko B.I., Pianykh K.Ye. [Thermodynamic Analysis of Steam-Oxygen Gasification of Graphite], Energotechnologii i resursusberezhenie [Energy Technologies and Resource Saving], 2014, (3), pp. 1120. (Ukr.)

22. Sintez gaz: sposoby poluchenija, proizvodstvo, sostav i primenenie. [Online Resource]. Access mode: http://ztbo.ru/o-tbo/stati/gaz (Rus.)

 

Bondar V.P., Zhukov V.O., Zhukova S.V.

The Gas Institute of National Academy of Sciences of Ukraine, Kiev

39, Degtyarevskaya Str., 03113 Kiev, Ukraine, e-mail: ig-secr@i.com.ua

Minimum of Exergy Losses in Non-Equilibriun Processe of Actuating Mediums Heat Exchange

In course of calculation of heat-exchange equipment, major parameters at which heat-exchanging process between heat-carriers runs with possible lesser losses of operational part of heat are defined by methods of thermo-dynamic. In comparison to developed methods of equilibrium processes of actuating mediums heat-exchange calculation, non-equilibrium is at stage of improvement. The research, allowing the defining minimum of entropy production and, accordingly, minimum of exergy losses in non-equilibrium processes of actuating media heat-exchange, is performed. Results of researches are valid both to externally non-equilibrium processes and polytropic. There is defined a dependency of the thermodynamic system entropy growth from the relation of the upper and lower boundary temperatures, independently from the operating media flow process in the heat-exchangers. There is shown that in certain degree of irreversibility the numerical value of which is determined technologically and structurally, there are the relations of thermodynamic parameters for which the operation media heat exchange entropy growth reaches of the minimum numerical value. As confirmation of analysis results example is presented, in which, on several variants, is shown course of entropy production of thermo-dynamic system through minimum that corresponds to the performed research. The carried analysis can find its application both in engineering works and analytical investigations. Bibl. 8, Fig. 1, Tab. 1.

Key words: heat-exchange, entropy, exergy, polytrope, heat-carrier, enthalpy.

 

References

1. Gohstein D.P. [Modern methods of thermodynamic analysis of power units], Moscow : Jenergija, 1969, 367 p. (Rus.)

2. Bondar V.P., Pyatnichko A.I. [Minimization of exergy losses in technology heat-exchangers], Himicheskaja tehnologija, 1985, (2), pp. 3537. (Rus.)

3. Martynovskiy V.S. [Analysis of actual thermo-dynamic cycles], Moscow : Jenergija, 1972, 215 p. (Rus.)

4. Kirillin V.A., Sychev V.V., Sheydlin A.E. [Technical thermodynamics], Moscow : Jenergija, 1974, 447 p. (Rus.)

5. Vargaftic N.B. [Reference book on thermo-physical properties of gases and liquids], Moscow : Nauka, 1972, 720 p. (Rus.)

6. [Reference book on physical-technical basics of deep freezing], Eds. M.P.Malkov, I.B.Danilov, A.E.Zeldovich, Moscow; Leningrad : Gosjenergoizdat, 1963, 416 p. (Rus.)

7. Miheev M.A. [Basics of heat transfer], Moscow; Leningrad : Gosjenergoizdat, 1949, 317 p. (Rus.)

8. Brodjanskij V.M. [Thermodynamic analysis of low-temperature processes], Moscow : Izdatelstvo Moskovskogo jenergeticheskogo institute, 1966, 445 p.

(Rus.)

 

Rudyka V.I., Candidate of Economic Sciences

STATE ENTERPRISE GIPROKOKS, Kharkov

60, Sumska Str., 61002 Kharkov, Ukraine, e-mail: giprokoks@ic.kharkov.ua

Potential of the DRI Tecnologies and Directions of its Usage in Iron and Steel Production (Review)

The brief review of the state of modern world and european metallurgy is presented. A range of problems of current importance to european steel production is highlighted together with the role and significance of alternative technologies of hot iron production in their solution. Information reflecting the status of these technologies as well as directions of their potential usage in the EU is provided. The actuality of the above subjects for 2 ukrainian iron and steel production is noted. Bibl. 5, Fig. 9, Tab. 1.

Key words: iron, steel, ore, reduction, emission 2.

 

References

1. World Steel in figures 2016 World Steel Association. Access mode: https: //worldsteel.org

2. Buelgler T., Kofler I. Direct reduction technology as a flexible tool to reduce the CO2 intensity of iron and steelmaking, 7th European Coke and Ironmaking Congress ECIC 2016, Linz, Austria, 1214 Sept. 2016.

3. Schmoele P. The blast furnace fit for the future? 7th European Coke and Ironmaking Congress ECIC 2016, Linz, Austria, 1214 Sept. 2016.

4. Schenk J., Lungen H.B. Evaluation of the capabilities of direct and smelting reduction processes to enance the energy efficiency and to reduce the CO2 emission of the steel production in Europe, 7th European Coke and Ironmaking Congress ECIC 2016, Linz, Austria, 1214 Sept. 2016.

5. 2015. World Direct Reduction Statistics. Access mode: https: // www.midrex.com

 

BravermanV.Ya., Candidate of Technical Scienceas, Vlasyuk V.V.

Research Institute STORM, Odessa

27, Tereshkova Str., 65078 Odessa, Ukraine, e-mail: shtorm_soj@ukr.net

echnologies of Utilization of Municipal Solid Waste as a Source of Receiving Alternative Energy Resources on the Exsample of Odessa Region (Review)

The problems of solid waste utilization are considered. It is shown that modern technologies of processing allow to consider waste as an alternative renewable resource. A comparison of different technologies of thermal treatment of unsorted waste to generate heat and electricity, such as gasification, pyrolysis, burning in industrial boilers on furnace grates, plasma processing of waste are represented. The main characteristics of industrial plants based on these technologies are discussed. Considered schemes for solving the problems of disposal of municipal solid waste generated in the Odessa region for their practical implementation, such as rice husk, cane, rice stalks, grain straw, medical waste, waste car tires. Specific recommendations on the construction in Odessa region industrial capacities for utilization of solid waste are represented. Bibl. 11.

Key words: solid waste, energy recycling, plasma gasification, the batch oxidation, renewable resources, Odessa region.

 

References

1. WTEC Sistema paketnogo okislenija BOS. Access mode: http://wteca-nada.com/

2. Malyshevskij A.F. Obosnovanie vybora optimalnogo sposoba obezvrezhivanija tverdyh bytovyh othodov zhilogo fonda v gorodah Rossii, Moscow: Ministerstvo prirodnyh resursov i jekologii RF, 2012. (Rus.)

3. Ocenka razlichnyh metodov termicheskoj pererabotki TBO. Access mode: http://ztbo.ru/o-tbo /lit/texnologii-otxodov/ocenka-razlichnix-metod ov-termicheskoj-pererabotki-tbo

4. Alter NRG Corp. (USA). Access mode. Rezhim dostupa: http://www. alternrg.com

5. LETAL International Inc. (USA). Access mode. Rezhim dostupa: http://www.1lennox.com

6. IRENA (2015), Remap2030. Perspektivy razvitija vozobnovljaemoj jenergetiki v Ukraine do 2030 goda. Access mode: http:// www.irena.org/remap

7. Access mode. Rezhim dostupa: http://greenologia.ru/othody/utilizaciya-i-perer

abotka/risovaya-sheluxa.html

8. Prirodnye jenergeticheskie resursy Ukrainskogo Pridunavja. Access mode.

http://ecodanube.in.ua/index.php.

9. Geletukha G.G., Zheleznaya T.A. Analiticheskaja zapiska BAU 7 ot 25.02.2014 goda Perspektivy ispolzovanija othodov selskogo hozjajstva dlja proizvodstva jenergii v Ukraine.

10. Tugov A.N. TES na TBO // Jenergosovet. 2014. 4. Access mode. Rezhim dostupa: http://www.energosovet.ru/bul_stat.php?idd=473

11. Utilizacija medicinskih othodov. Access mode. Rezhim dostupa: http://www.guesswho.com.ua /archive/greenport/projects/medical.html. (Rus.)

 

Gomelya N.D.1, Doctor of Technical Sciences, Professor, Hlushko O.V.1,

Candidate of Technical Sciences, Trohymenko G.G.2, Candidate of Biological Sciences, Butchenko L.I.1, Candidate of Technical Sciences

1National Technical University of Ukraine Kiev Polytechnic Institute named Igor Sikorsky, Kiev

37, Peremohy Ave., 03056 Kiev, Ukraine, e-mail: m.gomelya@kpi.ua, alyona_glushko@ukr.net

2National University of Shipbuilding named Admiral Makarov, Nikolaev

9, Heroes of Stalingrad Ave., 54025 Nikolaev, Ukraine

Electrolytic Removal of Heavy Metals Ions from Muriatic Solutions

The results of research on the electrochemical processing of acidic regeneration solutions containing heavy metals ions are presented. The use of a three-cell electrolyzer makes it possible to efficiently extract zinc, copper and nickel ions from muriatic solutions and to concentrate hydrochloric acid in the cells intermediate chamber. The paper studies the dependence of the current yield of heavy metals on the concentration of hydrochloric acid, the initial concentration of heavy metals in the cathode chamber, the duration of electrolysis and the concentration of hydrochloric acid in its concentrating zone. The yield of copper and zinc decreases with increasing of acidity in the initial solutions and in the intermediate chamber of the cell. The current yield of nickel is determined to be little depended on the initial concentration of hydrochloric acid. The results on the concentration of hydrochloric acid, depending on the duration of electrolysis, the initial concentration of acid and heavy metals in the catholyte are presented. Bibl. 9, Fig. 9.

Key words: electrolysis, catholyte, ion exchange, regeneration solution, copper, nickel, zinc.

 

References

1. Kurtskhaliya I.S., Enukidze N.E., Simoniya Z.M., Partsvaniya D.A., Nadirashvili M.V. [Development of technological process of wastewater treatment of galvanic production], GR.: Izv. AN Gruzii. Ser. him., 2005, (12), pp. 2429. (Rus.)

2. Bosso S.T., Enzweiler I. Envalution of heavy metal removal from agueous solution onto scolecite, Brazil: Instituto de Geociencias, UNICAMP, Campinass, SP, Water Res, 2002,(9), pp. 47954800.

3. Donchenko M.., Srbna O.G., Redko R.M. [Role of adverse reactions in processes lectric extraction metals from wastewater metal production], Energotechnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2005, (3), pp. 2530. (Ukr.)

4. Gomelja N.D. Sagajdak I.S. [Development of ecologically pure technology of extraction of zinc from galvanic rocks], Mzhn. nauk.-prakt. konf. Perspektivnye napravlenija razvitija jekologii, jekonomiki, energetiki, Odessa, Ukraine, May 16, 1999, Odessa, 1999, pp. 8185 (Ukr.)

5. Sagajdak .S. [Localization and disposal of wastewater contaminated with chromium compounds, cadmium and zinc], Avtoreferat disertac na zdobuttja naukovogo stupenja kandidata tehnchnih nauk.[ Thesis for the degree of candidate of technical sciences], Kiev, Ukraine, 2000, pp. 1112. (Ukr.)

6. Aleskovskij V.B. Bardin V.V., Bulatov M.I. Fiziko-himicheskie metody analiza. [Physicochemical methods of analysis], Leningrad : Himija, 1988, 420 p. (Rus.)

7. Lure Ju.Ju. Analiticheskaja himija promyshlennyh stochnyh vod. [Analytical chemistry of industrial wastewater], Moscow : Himija,1984, 312 p. (Rus.)

8. Donchenko M.. Redko R.M., Kovalenko S.Ju. [Electrochemical deposition of nickel sulphate eluate formed during regeneration cation], Mzhn. nauk.-prakt. konf. Suchasn problemi ohoroni dovkllja, raconalnogo vikoristannja vodnih

resursv ta ochistki prirodnih stchnih vod, Kiev, Ukraine, May 30, 2007, Kiev : Society Tovarystvo Znannja Ukrainy, 2007, pp. 6972. (Ukr.)

9. Gomelja M.D., Omelchuk Ju.A., Glushko O.V., Kamaev V.S. [Electrochemical removal of nickel ions from neutral and acid regeneration solutions], Shdno-Evropejskij zhurnal peredovih tehnologj, 2011, 6/6, No. 54, pp. 2629. (Ukr.)