«Energy Technologies and Resource Saving» 1-2016

 

Rudyka V.I., Candidate of Economic Sciences

STATE ENTERPRISE «STATE INSTITUTE FOR DESIGNING ENTERPRISES OF COKE OVEN AND BY­PRODUCT PLANTS», Kharkov

60, Sumska Str., 61002 Kharkov, Ukraine, e-mail: giprokoks@ic.kharkov.ua

 

Energy and Resource Saving Technologies in GIPROKOKS Projects

 

SE «GIPROKOKS» work experience related to energy-saving technologies and energy efficiencyin the development of scientific and technical documentation for the projects of existing and reconstructed coke oven and by-product enterprises is presented. Systematic approach to energy efficiency is applied. The main directions of energy-saving at coke ovenand by-product plants are described: energy-saving measures in the main product production— coke and by-products from coking process; introduction of coal blend stamping technology, together with the dry cooling of coke. Challenging issue of thermochemical treatment of low-grade coal, brown coal and other carbonaceous feed into motor fuels and other technology products is reviewed. Bibl. 11, Fig. 3.

Key words: coke oven and by-product plants, energy-saving, waste energy, coke, coke oven batteries, thermochemical treatment of carbonaceous feed.

 

References

 

1. Energy saving: Law of 01.07.1994 number 74/94-VR. — http://zakon4.rada.gov.ua/laws/ show/74/94-âp.

2. Sectoral energy efficiency and energy saving program for the period up to 2017 : Order of Ministry of Industrial Policy of Ukraine from 25.02.2009 number 152.— http://search.ligazakon.ua/l_doc2.nsf/ linkl/FIN45377.html.

3. Handbook of Coke Chemical Engineer / Eds. V.I.Rudyka, L.N.Borisova, Kharkov : FLP Liburkina L.M., 2016, Vol. 4, Ch. 16: Energy saving in the production of coke, 480 p. (Rus.)

4. Ju.E.Zingerman, V.G.Pavlovskij, V.I.Rudyka, A.A.Shevelev, Energy coke. Energy possibility coke enterprise, Kharkov: Publishing House «INZHEK», 2011, 250 p. (Rus.)

5. Handbook of Coke Chemical Engineer / Eds. V.I.Rudyka, Ju.E.Zingerman, Kharkov : Publishing House «INZHEK», 2014, Vol. 2, Ch. 9: Dry quenching of coke, 728 p. (Rus.)

6. Rudyka V.I., Zingerman Ju.E., Kamenjuka V.B. Plants dry coke projects Giprokoks, Koks i himija, 2004, (7), pp. 27–29. (Rus.)

7. Starovojt A.G., Goncharov V.F., Pleshkov P.I. [Investigation of dry coke quenching], Koks i himija, 1985, (8), pp. 14–18. (Rus.)

8. Gural’ V.V., Krivonos V.V., Rudyka V.I., Taruta A.A. [Production of metallurgical coke on the basis of the combination of the charge and tamping coke dry quenching — effective environmentally friendly and energy-saving technology], Koks i himija, 2008, (8), pp. 23–31. (Rus.)

9. Zubilin I.G., Rudyka V.I. [Production of synthesis gas for the production of environmentally friendly motor fuels : Theory and Technology], Êharkov : Publ. Center Êharkovskij Nationalnuj Universitet, 2002, 315 ð. (Rus.)

10. Zubilin I.G., Rudyka V.I., Pinchuk S.I. [Production of coal energovosstanoviteley for basic industries : Theory, Technology, Methodology], Êharkov : Publ. Center Êharkovskij Nationalnyj Universitet, 2004, 351 ð. (Rus.)

11. Rudyka V.I. Energy saving in the basic industries: theory, technology], Êharkov : Publishing House «INZHEK», 2007, 304 ð.(Rus.)

 

Soroka B.S., Doctor of Technical Sciences,Vorobiov M.V., Candidate of Technical Sciences, Bershadskyi A.I.

The Gas Institute of National Academy of Sciences of Ukraine, Êiev

39, Degtyarivska Str., 03113 Kiev, Ukraine, e-mail: boris.soroka@gmail.com

 

Natural Gas Saving by Replacement the Last for Process Gases while Heating Middle and High Temperature Furnaces. Part 1. Influence of Low-Calorie Gases Characteristics on Fuel Flow Rate in Furnaces

 

In the paper the gas fuel classification has been advanced basing upon Eurostat’s criteria. The category of «Gas fuels» includes the natural gas (NG) and derived or recovered gases: blast furnace (BFG), coke-oven (COG) and the gas works gas (GWG) but doesn’t include the biogases. We unite the most wide-spread of mentioned notions like BFG and COG in group called «process gases» PG. The thermodynamic analysis of application the low-calorific gas fuels and fuel mixtures in the industrial furnaces has been carried out by using the ideal gas equation. The main heat engineering characteristics of the process gases: theoretical combustion temperature TT and combustion heat Ql — have been calculated grounded upon general enthalpian attitudes for any fuels and in dependence on composition of the mixed fuels: BFG with natural gas or BFG with COG. Evaluation of opportunities the natural gas saving by transfer from NG as a fuel for mixed NG + PG fuel by heating the furnaces has been performed. The technique of definition the substituting fuel flow rate has been proposed in frame of author’s methodology of fuel interchangeability. The problem of saving or over expenditure the NG flow rate along with change of available and of combustion heat for mentioned gas fuel mixtures (NG with BFG and COG + BFG) has been studied and analyzed. The methodology of the fuels replacement has been advanced. Instead of traditional approach with the basic condition of conservation the heat flux introduced into the furnace by any fuel combustion, the novel condition of conservation the useful heat absorbed by the furnace charge is proposed by author (B. Soroka). It means an assumption the condition of invariable flux of the useful total enthalpy to be attained in case of fuel replacement and account of the furnace (fuel utilization) efficiency. An analysis of fuel saving by flue gases heat recovery has been fulfilled for the case of preheating the initial combustion components: an air or/and BFG. It has been stated that the role of fuel preheating for NG saving is increasing with respect to opportunities of the proper impact of an air flow as the share of BFG in the mixture of fuel gases will grow. The calculations have been carried out for the cases of furnace operation temperatures of 800 and 1000 °C by conditions of cold initial combustion components: fuel gases and an air-oxidant (25 °C) and under preheating one or both components (250 and 400 °C). It was stated that saving of NG is increasing by enhancement the portion of BFG in fuel mixture with NG while the working (furnace operation) temperature is of moderate level. For eligible cases the required rates of heat energy fluxes: for available heat (chemical and physical (sensible) energy of initial combustion components: fuel and air-oxidant) and for combustion heat — have been evaluated. The higher is the share of BFG in fuel mixture with NG the bigger are the required heat fluxes resulting in over expenditure for the last values in comparison with heat consumption for the cases of clean natural gas using by furnace operation while lowering the NG portion in mixed fuel gas. The calculations on replacement the natural gas for mixture of COG with BFG have been carried out by means of evaluation an available heat content and of combustion heat through the values of excess total enthalpy flows of initial combustion components: gas fuel and an air-oxidant. The similar procedure on comparison the combustion heat for mentioned fuels has been fulfilled as well. Bibl. 21, Fig. 3, Table 2.

Key words: alternative gas fuel, blast furnace gas, coke oven gas, combustion heat, enthalpy analysis, fuel replacement, heat-treatment furnace, substitution of fuels, natural gas saving, theoretical combustion temperature.

 

References

 

1. Eppensteiner S. Bright annealing technology for high — alloyed steel strip — a comparison of concepts. Heat Processing, 2015, (4), pp. 45–50.

2. Martin P. Optimising performance, energy efficiency and greenhouse gas emissions. Iron & Steel Today, November 2013, pp. 13–14.

3. Energy balance sheets data 2013. Eurostat statistical book. Luxembourg, 2015.

4. Komori T., Yamagami N., Hara H. Design for blast furnace gas firing gas turbine. — https://www.mhi.co.jp/power/news/sec1/pdf /2004_nov_04b.pdf (accessed June 20, 2012).

5. Omerbegovic K., Schalles D.G., Beichner F.L. Regenerative Ultra Low NOx — Gichtgasbrenner in der Praxis, GasWaerme Intern., 2015, (6), pp. 63–67.

6. Omerbegovic K., Schalles D.G., Beichner F.L. Regenerative blast furnace gas blastoflame ultra low NOx burner. Heat Processing, 2016, (1), pp. 65 – 68.

7. Kuehne L., Neuhaus T., Rams H. Heibgaserzeuger fuer den Einsatz von niederkalorischen Gasen und Braunkohlenstaub, GasWaerme Intern., 2016, (1), pp.45–49. (De)

8. Technical data bulletins: Thermal applications. Hot gas generators. Loesche Innovative Engineering. — [Web resource]. — Access mode: http://www.loesche.com/assets/PageContent /Data/Multimedia/Brochures/Hot-Gas-Generators/ pdf/201Thermal- ApplicationsHot- Gas- GeneratorEN.pdf

9. Al-Halbouni A., Giese A., Leicher J., Goerner K., Schillingmann D., Schillingmann H., Huewelmann C. Burner system using entrained hot pyrolysis gas from biomass, Heat Processing, 2015, (4), pp. 69–74.

10. Fantuzzi M. Revamping of reheating furnaces, Heat Processing, 2015, (4), pp. 51–57.

11. Soroka B., Sandor P. Combined power and environmental optimization of the fuel type by reheating and thermal treatment processes. Proc. of the 21st World Gas Conference, Nice, France, 6–9 June, 2000, 15 p.

12. Soroka B.S., Kornienko A.V. Comparative energy and environmental analysis of use of alternative gas fuels of various origins, International Scientific Journal «Alternative Energy and Ecology» (ISJAEE), 2012, (7), pp. 105–112. (Rus.)

13. Soroka B. Development of combined power and environmental fundamentals of natural gas substitution for alternative combustible gases, International Journal for a Ñlean Environment, 2013, 14 (2–3), pp. 91–114.

14. Weber E.J. Interchangeability of Fuel Gases. Gas Engineers Handbook. Fuel Gas Engineering Practices, First Edition, Second Printing. Section 12, Chapter 14. — N. Y. : The Industrial Press, 1966, pp. 12/239–12/252.

15. Soroka B.S., Bershadskyi A.I. The Fuel Certification by Heat Engineering Characteristics, [Energy Technologies and Resource Saving], 2014, (2), pp. 3–13.

16. Soroka B.S., Kudryavtsev V.S., Karabchievskaya R.S. Analysis of efficiency of use of fuel and energy by using mathematical and computer modeling, Coll. Conference Proceedings «Modeling – 2008», Kiev, May 14–16, 2008, Kiev : Institute for Modelling in Energy Engineering of NAS of Ukraine, I, pp. 337–343. (Rus.)

17. Karp I.N., Soroka B.S., Dashevskii L.D., Semernina S.D. The products of combustion of natural gas at high temperatures, Kiev : Technika, 1967, 382 p. (Rus.)

18. Pryhozhyn I., Kondepudi D. Modern thermodynamic. From Heat Engines to Dissipative Structures, Moscow : Mir, 2002, 461 p. (Rus.)

19. Physical Encyclopedic Dictionary / Chief editor A.M.Porokhov, Moscow : Sovietskaya Encyclopedia, 1984, 944 p. (Rus.)

20. Heat Calculation of boilers (norms method). Sankt-Peterburg : NPO CKTI, 1998, 259 p. (Rus.)

21. Stademann A. Gasbeschaffenheit als Herausforderung fur Industrie und Gewerbe. GasWaerme Intern, 2015, (4), pp. 45–49. Received April 11, 2016

 

Boichenko S.V., Doctor of Technical Sciences, Professor, Iakovleva A.V., Shkilniuk I.A.

National Aviation University, Kiev

1, Kosmonavt Komarov Ave., of. 1.402, 03058 Kiev, Ukraine, e-mail: ñhemmotology@ukr.net

 

Implementation of Harmonized Technical Requirements to the Quality of Aviation Gasolines and Jet Fuel

 

Modern state of normative-technical regulation in sphere of aviation fuel supply is presented in the article. The article describes in details the main principles of approach to normative-technical regulation in EU countries and other developed countries. The main normative documents that determine requirements to aviation gasolines and jet fuels are presented in the articles. Attention is paid to the problem of unaknowledgement of jet fuels produced in Ukraine by numerous leading countries. It is connected with some inconformity of requirements to jet fuels quality stated in Ukrainian and international standards. The article describes documents that regulate relations in sphere of aviation fuel supply and that were used as a base for future technical regulation. The parts of the developed technical regulation are presented and the main content of these parts are considered. There was done the conclusion about practicability of technical regulation development and about positives consequences in a result of its implementation in Ukraine. Bibl. 10, Tab. 3.

Key words: technical regulation, quality, normative-technical regulation, aviation gasoline, jet fuel, aviation fuel supply.

 

References

 

1. Bojchenko S.V., Jakovleva A.V., Vovk O.A. Vlijanie kachestva aviacionnyh topliv na bezopasnost’ poleta i okruzhajushhuju sredu, Nauka ta ³nnovac³¿, 2013, (4), pp. 25–30. (Rus.)

2. Jakovleva A.V. Bojchenko S.V., Shkil’njuk I.A, Kljuchnik O.G. Sravnitel’nye harakteristiki fiziko-himicheskih svojstv topliv dlja vozdushno-reaktivnyh dvigatelej raznyh stranproizvoditelej, Jenergotehnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2013, (4), pp. 15–22. (Rus.)

3. Boichenko S., Iakovlieva A., Gay A. Cause-Effect Analysis of the Modern State in Production of Jet Fuels, Journal of Shemistry & Chemical Technology, 2014, 8 (1), pp. 107–116.

4. Tehn³chne reguljuvannja v Ukra¿n³: jak zabezpechiti rozvitok ekonom³ki ³ zahist prav spozhivach³v : Zv³t., M³zhnarodna f³nansova korporac³ja, 2008, 89 p. (Ukr.)

5. Nagorna O.O. Sistema tehn³chnogo reguljuvannja jak skladova ³nnovac³jnogo rozvitku ekonom³ki Ukra¿ny, Efektivna ekonom³ka, 2014, (6). — [Elektronnij resurs]. — Rezhim dostupu: http:// www.economy.nayka.com.ua/?op=1&z=3145/ (Ukr.)

6. Reglament Kom³s³¿ (ES) ¹ 2042/2003 v³d 20.03.2003 pro p³dtrimku l’otno¿ pridatnost³ pov³trjanih suden ta av³ac³jnih virob³v, chastin ³ ustatkuvannja ta pro zatverdzhennja organ³zac³j ta personalu, shho berut’ uchast’ u vikonann³ cih zavdan’. — [Elektronnij resurs]. — Rezhim dostupu: http://www.transport-ukraine.eu/docs /27?page=3. (Ukr.)

7. Nastavlenie po sluzhbe gorjuche-smazochnyh materialov v GA, Moscow : Vozdushnyj transport, 1986, 142 p.

8. Nakaz Derzhav³asluzhbi Ukra¿ni ¹ 416 v³d 14.06.2006 r. pro zatverdzhennja «²nstrukc³¿ z zabezpechennja zapravlennja pov³trjanih suden palivno-mastil’nimi mater³alami ³ tehn³chnimi r³dinami na p³dpriºmstvah civ³l’nogo av³ac³jnogo transportu Ukra¿ni». — [Elektronnij resurs]. — Rezhim dostupu: http://avia.gov.ua/documents/ airports/ Aviation_Rules/Orders_SAA /30011.html (Ukr.)

9. Rekomendac³¿ shhodo rozroblennja proekt³v tehn³chnih reglament³v (³z zm³nami, zatverdzhenimi Rozporjadzhennjam Derzhspozhivstandartu). — [Elektronnij resurs]. — Rezhim dostupu: http://zakon2.rada.gov.ua/laws/show/124–19. (Ukr.)

10.   7463.1000146

 

Vavrysh A.S., PhD Student, Marchuk Yu.V., Candidate of Technical Sciences, Prazhennik Yu.G.

The Gas Institute of National Academy of Sciences of Ukraine, Êiev

39, Degtyarivska Str., 03113 Kiev, Ukraine, e-mail: antonina.v@gmail.com

 

Methods of Studying the Structure and Purity of the Carbon Nanotubes (Review)

 

During the last several decades carbon nanotubes have gradually become an important industrial material. Insufficiency and no systematic information on research methods and purity of structure leads to the impossibility of comparing the results obtained by different authors. This article is a review of the scientific literature on the only goal to review and summarize existing methods such as scanning electron microscopy, transmission electron microscopy, Raman, termogravimetric analysis and study of the adsorption of gas to the surface. The review of existing defects in graphene layers and nanotubes has also been made in this article. Bibl. 72, Fig. 3.

Key  words: carbon nanotubes, research methods, defects.

 

References

 

1. Iijima S. Helical microtubules of graphitic carbon, Nature, 1991, 354, iss. 6348, pp. 56–58.

2. Oberlin A., Endo M., Koyama T. Filamentous growth of carbon through benzene decomposition, Journal Cryst Growth, 1976, 32 (3), pp. 335–349.

3. Freiman S., Hooker S., Migler K. Measurement Issues in Single Wall Carbon Nanotubes NIST Recommended Practice Guide, Special Publication 960-19, NIST Materials Science and Engineering Laboratory and Sivaram Arepalli NASA-DSC, 2008, p. 78.

4. Bondarenko B.I., Svyatenko A.M., Savenko L.V. [Carbonization iron-ore materials in restoring the converted gas in a fluidized bed : Use of natural gas in an industry], Kiev : Naukova dumka, 1969, pð. 1–5. (Rus.)

5. Murr L.E., Guerrero P.A. Carbon nanotubes in wood soot, Atmospheric Science Letters, 2006, 7 (4), pp. 93–95.

6. Bang J.J., Guerrero P.A., Lopez D.A., Murr L.E., Esquivel E.V. Carbon nanotubes and other natural gas combustion streams, Journal of Nanoscience and Nanotechnology, 2004, 4, pp. 1354–1358.

7. Dillon A.C., Gennett T., Jones K.M., Alleman J.L., Parilla PA., Heben M.J. A simple and complete purification of singlewalled carbon nanotubes materials, Advanced Materials, 1999, 11 (16), pp. 1354–1358.

8. Krause B., Petzold G, Pegel S., Potschke P. Correlation of carbon nanotube dispersabilty in aqueous surfactant solutions and polymers, Carbon, 2009, 47 (3), pp. 602–612.

9. Grossod N, Regev O., Loos J., Meuldijik J., Koning C. Tme-dependent study of the exfoliation process of carbon nanotubes in aqueous dispersions by using UV-visible spectroscopy, Analytical Chemistry, 2005, 77 (16), pp. 5135–5139.

10. Osswald S., Havel M., Gogotsi Y. Monitoring oxidation of multiwalled carbon nanotubes by Raman Spectroscopy, Journal of Raman Spectroscopy, 2007, 38 (6), pp. 728–736.

11. Mansfield E, Kar A., Hooker S. Applications of TGA in quality control of SWCNT’s, Analytical and Bioanalytical Chemistry, 2010, 393 (3), pp. 1071–1077.

12. Caplovicova M., Danis T., Buc D, Caplovac L., Janik J., Bello I. An alternative approach to carbon nanotube sample preparation for TEM investigation, Ultramicroscopy, 2007, 107 (8), pp. 692–697.

13. Lehman J.H., Terrones M., Mansfield E., Hurdt K.E., Meunier V. Evaluating the characteristics of multiwall carbon nanotubes, Carbon, 2011, 49, pp. 2581–2602.

14. Dawei Gao, Weiwei Liu, Li Hou. Observation of the growth of carbon nanotubes prepared at low temperature, Crystal Research and Technology, 2008, 43 (9), pp. 949–952.

15. Cumings J., Goldhaber-Gordon D., Zettl A. Electron Microscopy of the operation of nanoscale devices, Material Research Society Symposium Proceedings, 2005, 839, pp. 7.1.1–7.1.12.

16.  Zhou D., Chow L. Complex structure of carbon nanotubes and their implications for formation mechanism, Journal of Applied Physics, 2003, 93 (12), pp. 9972–9976.

17. Zhang L., Chen L., Wells T., El-Gomati M. Bamboo and herringbone shape carbon nanotubes and carbon nanofibres synthesized in direct current- plasma enhanced chemical vapor deposition, Journal of Nanoscience and Nanotechnology, 2009, 9 (7), pp. 4502–4506.

18. Endo M., Takeuchi K., Hiraoka T., Furuta T., Kasai T., Sun X. Stacking nature of grapheme layers in carbon nanotubes and nanofibres, Journal of Physics and Chemistry of Solids, 1997, 58 (11), pp. 1707–1712.

19. Hashimoto A. Direct evidence for atomic defects in grapheme layers, Nature, 2004, 430, pp. 870–873. 20. Ge M., Sattler K. Observation of fullerene cones // Chemical Physics Letters, 1994, 220, p.192–196.

21. Cataldo F. The impact of fullerene-like concept in carbon black science, Carbon, 2002, 430, pp. 870–873.

22. Tamura R., Akagi K., Tsukada M. Electronic properties of polygonal defects in graphitic carbon sheets, Physical Review, 1997, B56, pp. 1404–1411.

23. Belenkov E.A., Zinatulina Y.A. [Topological defects in graphene layers], Bulletin of the Chelyabinsk State University, 2008, (25), pð. 32–38. (Rus.)

24. Yakobson B.I., Avouris P. Mechanical properties of carbon nanotubes, Topics Appl. Phys, 2001, 80, pp. 287–327.

25. Zhou T. Long-range interaction between Stone-Wales defects in zigzag single-walled carbon nanotubes, Physical Review B, 2005, 72, pp. 193407.

26. Li L., Reich S., Robertson J. Defects energies of graphite: density-functional calculations, Physical Review, 2005, B72, pp. 184109.

27. Thrower P.A. The study of defects in graphite by transmission electron spectroscopy, Chemistry and Physics of Carbon, 1969, 5, pp. 217–319.

28. Stone A.J., Wales D.J. Theoretical studies of icosahedral C60 and some related species, Chemical Physics Letters, 1986, 128 (5–6), pp. 501–503.

29. Girit C.O., Meyer J.C., Erni R., Rossell M.D., Kisielowski C., Yang L. Graphene at the edge: stability and dynamics, Science, 2009, 323(5922), pp. 1705–1708.

30. Cruz-Silva E., Cullen D.A., Gu L., Romo-Herrera J.M., Munoz-Sandoval E., Lopez-Urias F. Heterodoped nanotubes: theory, synthesis and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes, AGS Nano, 2008, 2 (3), p. 441–448.

31. Romo-Herrera J.M., Cullen D.A.,Cruz-Silva E., Ramirez D., Sumpter B.G., Meunier V. The role of sulfur in the synthesis of novel carbon morphologies : from covalent Y-junctions to sea-urchin- like structures, Advanced Functional Materials, 2009, 430 (7002), pp. 870–879.

32. Benoit J.P., Buisson J.P., Chauvet O., Gordon C., Lefrant S. Low-frequency Raman studies of multiwalled carbon nanotubes : experiments and theory, Physical Review B, 2002, 66 (7), pp. 073417-1-4.

33. Lefrant S. Raman and SERS studies of carbon nanotubes systems, Current Applied Physics, 2002, 2 (6), pp. 479–482.

34. Jorio A., Satio R., Dresselhaus M.S., Dresselhaus M. Raman spectroscopy in grapheme related system, Willey-VCH, 2011, p. 329.

35. DiLeo R.A., Landi B.J., Raffaelle R.P. Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy, Journal of Applied Physics, 2007, 101(6), p. 064301-1-5.

36. Kim U.J., Liu X.M., Furtado C.A. et al. Infrared- Active Vibrational Modes of Single-Walled Carbon Nanotubes, Physical Review Letters, 2005, 95 (15), pp. 157402-4.

37. Belin T., Epron F. Characterization methods of carbon nanotubes: a review, Materials Science and Engineering B, 2005, 409 (2), pp. 46–99.

38. Bantignies J.-L., Sauvajol J.-L., Rahmani A. et. al. Infrared-active photons in carbon nanotubes, Physical Review B, 2006, 74 (19), p. 195425-5.

39. Sbai K., Rahmani A., Chadli H et al. Infrared Spectroscopy of Single-Walled Carbon Nanotubes, Jour- nal of Physical Chemistry B, 2006, 110 (25), pp.12388–12393.

40. Mirsa A., Tyagi P.K., Rai P. et al. FTIR spectroscopy of multiwalled carbon nanotubes: a simple approach to study the nitrogen doping, Journal of nanoscience and nanotechnology, 2007, 7 (6), pp. 1820–1823.

41. Montesal I., Mucoz E., Benito A.M. et al. FTIR and Thermogravimetric analyses of biotin-functionalized single-walled carbon nanotubes, Journal of nanoscience and nanotechnology, 2007, 7 (10), pp. 3473–3476.

42. Korlacki R., Steiner M., Huniong Q. Optical fourier transform spectroscopy of single-walled carbon nanotubes and single molecules, Chemical Physics, 2007, 8 (7), pp. 1049–1055.

43. Nanotechnologies — Characterization of single- wall carbon nanotubes using near infrared photoluminescence spectroscopy. Reference number of document: ISO/CD TS 10867. — Electronic resource: http://www.iso.org/iso/catalogue_ detail.htm?csnumber=46245.

44. Brunauer A.S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers, Journal of American Chemisrty Society, 1938, 60 (2), pp. 309–319.

45. Do D.D. Adsorption analysis:equilibria and kinetics, London : Imperial College Press, 1998.

46. Rouquerol F., Rouquerol J., Sing K. Adsorption by powders and porous solids, principles, methodology and applications, London: Academic Press, 1999.

47. Peigney A., Laurent C., Flahaut E., Basca R.R., Rousset A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, 2001, 39, pp. 507–514.

48. Lucio D., Laurent D., Roger G., Yasushi S., Noriko Y. KOH activated carbon multiwall nanotubes, Carbon: Science and Technology, 2009, 3, pp. 120–124.

49. Frackowiak E., Delpeux S., Jurewicz K., Szostak K., Cazorla-Amoros D., Beguin F. Enhanced capacitance of carbon nanotubes through chemical activation, Chemical Physics Letters, 2002, 361, pp. 35–41.

50. Raymundo-Pinero E., Azais P., Cacciaguerra T., Cazorla-Amoroa D., Beguin F. High surface area carbon nanotubes prepared by chemical activation, Carbon, 2002, 40, pp. 1614–1617.

51. Raymundo-Pinero E., Azais P., Cacciaguerra T., Cazorla-Amoroa D., Linares-Solano A., Beguin F. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization, Carbon, 2005, 43, pp. 786–795.

52. Jurewicz K., Babel K., Pietrzak R., Delpeux S., Wachowska H. Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation, Cabon, 2006, 44, pp. 2368–2375.

53. Li Z., Pan Z., Dai S. Nitrogen adsorption characterization of aligned multiwalled carbon nanotubes and their acid modification, Journal of Colloid Interface Science, 2004, 277, pp. 35–42.

54. Kim S.H., Mulholland G.W., Zachariah M.R. Density measurement of size selected multiwalled carbon by mobility-mass characterization, Carbon, 2009, 47, pp. 1297–1302.

55. Available from: www.swentnano.com

56. Laurent Ch., Flahaut E., Peigney A. The weight and density of carbon nanotubes versus the number of walls and diameter, Carbon, 2010, 48, iss. 10, pp. 2994–2996.

57. Pang L.S.K., Saxby J.D., Chatfield S.P. Thermogravimetric analysis of carbon nanotubes and nanoparticles, Journal of Physical Chemistry, 1993, 97 (1), pp. 6941–6942.

58. Lima A, Musumed A, Liu H-W, Waclawik E, Silva G. Purity evaluation and influence of carbon nanotubeon carbon nanotube/graphite thermal stability, Journal of Thermal Analysis and Calorimetry, 2009, 97 (1), pp. 257–263.

59. Dunens O.M., MacKenzie K.J., Harris A.T. Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts, Environmental Science and Technology, 2009, 43 (20), pp. 7889–7894.

60. Kowalska E., Kowalczyk P., Radomska J., Czerwosz E., Wronka H., Bystrzejewski M. IInfluence of high vacuum annealing treatment on some properties of carbon nanotubes, Journal of Thermal Analysis and Calorimetry, 2006, 86 (1), pp. 115–119.

61. Huang W., Wang Y., Luo G., Wei F. 99,9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing, Carbon, 2003, 41(13), pp. 2585–2890.

62. Lin W., Moon K.-S., Zhang S., Ding Y., Shang J., Chen M. Microwave makes carbon nanotubes less defective, ACS Nano, 2010, 4 (3), pp. 1716–1722.

63. Born D., Andrews R., Jacques D., Anthony J., Bailin C., Meier M.S. Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry, Nano Letters, 2002, 2 (6), pp. 615–619.

64. Feng Y., Zhang H., Hou Y., McNicholas T.P., Yuan D., Yang S. Room temperature purification of few-walled carbon nanotubes with high yield, ACS Nano, 2008, 2 (8), pp.1634–1638.

65. Trigueiro J.P.C., Sivla G.G., Lavall R.L., Furtado C.A., Oliveira S., Ferlauto A.S. Purity evaluation of carbon nanotube materials by thermogravimetric, TEM and SEM methods, Journal of Nanoscience and Nanotechnolgy, 2007, 7 (10), pp. 3477–3486.

66. Peng L., Tingrnei W. Ultrasonic-assisted chemical oxidative cutting of multiwalled carbon nanotubes with ammonium persulfate in neutral media, Applied Physics A: Materials Science and Processing, 2009, 97 (4), pp. 771–775.

67. Kim D.Y., Yang C.-M., Park Y.S., Kim K.K., Jeong S.Y., Han J.H. Characterization of thin multi-walled carbon nanotubes synthesized by catalytic chemic vapor deposition, Chemical Physics Letters, 2005, 413 (1–3), pp. 135–141.

68. Don-Young K., Young Soo Y., Soon-Min K., Hyoung-Joon J. Preparation of aspect ratio-controlled carbon nanotubes, Molecular Crystals and Liquid Crystals, 2009, 510, pp. 79–86.

69. Moodley P., Loos J., Niemantsverdriet J.W., Thune P.C. Is there a correlation between catalyst particle size and CNT diameter?, Carbon, 2009, 47 (8), pp. 2002–2013.

70. Ding F., Rosen A., Campbell EEB, Falk LKL, Bolton K. Graphitic encapsulation of catalyst particles in carbon nanotube production, The Journal of Physical Chemistry B, 2006, 110 (15), pp. 7666–7670.

71. McKee GSB, Deck C.P., Vecchio K.S. Dimensional control of multi-walled carbon nanotubes in floating- catalyst CVD synthesized, Carbon, 2009, 47 (8), pp. 2085–2094.

72. Zhang H., Chen Y., Zeng G., Huang H., Xie Z., Jie X. The thermal properties of controllable diameter carbon nanotubes synthesized by using AB5 alloy of micrometer magnitude as catalyst, Materials Science and Engineering A, 2007, 464 (1–2), pp. 17–22.

 

Volchyn I.A., Doctor of Technical Sciences, Haponych L.S., Candidate of Technical Sciences

Coal Energy Technology Institute of National Academy of Sciences, Kiev

9, Andryivska Str., 04070 Kiev, Ukraine, e-mail: volchyn@gmail.com, haponych@ukr.net

 

Ñalculatiîn of the Parameters of Exhaust Gases Coal-fired Thermal Power Plants Based on Solid Fuel Characteristics

 

We have developed an engineering method of determining the specific emission of dry exhaust gases at the Ukrainian coal-fired thermal power plants (TPP) and the expected concentration of sulfur dioxide in them based on the date of the technical analysis in the presence of unburnt-carbon factor q4. We propose to use the developed method for high-reactive [G, DG, D] and low-reactive [A, SA (P)] coals in the range of the fuel ash content Ad from 4.0 to 50.0 % and low heat value Qi r from 14.5 to 32.0 MJ/kg for boilers with wet and dry slag removal. Calculations of the gross and specific emissions of dry exhaust gas and the concentration of sulphur dioxide in them at the Ukrainian coal-fired TPPs since 2012 to 2015 were carried out. The values of specific SO2 emissions in exhaust gases during the recent years are at the level of 16–18 g/kWh of electricity supplied. The developed method allows to make an estimate of the expected sulphur dioxide emission in exhaust gases and to choose necessary desulphurization technology to meet the environment legislation requirements. Bibl. 12, Fig. 1, Tab. 5.

Key  words: power industry, environment, thermal power plant, exhaust gas, emission, sulphur dioxide.

 

References

 

1. Nakaz Ministerstva okhorony navkolyshn’oho pryrodnoho seredovyshcha Ukrayiny vid 22.10.2008 r. # 541 «Pro zatverdzhennya Tekhnolohichnykh normatyviv dopustymykh vykydiv zabrudnyuyuchykh rechovyn iz teplosylovykh ustanovok, nominal’na teplova potuzhnist’ yakykh perevyshchuye 50 MVt» [The Order of the Ministry of the Environment of Ukraine No. 541 dated October, 22, 2008 «On approval of the technological norms of the permissible contaminants’ emissions from TPPs, rated capacity of which exceeds 50 MW». — Access mode: http://zakon0. rada.gov.ua/laws/show/z1110-08 (the accessed date 2.12.2015) — the screen name] (Ukr.).

2. The Directive 2001/80/EC of the European Parliament and of the Council of 23 October 2001 on the limitation of emissions of certain pollutants into the air from large combustion plants, Official Journal of the European Communities, L 309/1, 27.11.2001.

3. Volchyn I., Dunayevska N., Haponych L., Chernyvskyi M., Topal O., Zasyadko Ya. [Prospects for the implementation of clean coal technologies in the energy sector of Ukraine], Kiev : GNOZIS, 2013, 310 p. (Ukr.).

4. [GREEN BOOK. The emissions’ reduction in thermal power of Ukraine by meeting the requirements of the European Energy Community], Kiev, 2011, 43 pp. — [Electronic resource]. — Access mode: http://ua-energy.org/upload/files/Green%20 book_TES_ICPS.pdf (the accessed date 12.01.2016) — the screen name] (Ukr.).

5. Strukova E., Golub A., Markandya A. Air Pollution Costs in Ukraine. — Access mode: http://ideas.repec.org/p/fem/femwpa/2006.120.h tml (the accessed date 1.02.2016) — the screen name. 6. HKD 34.02.305–2002. [«Emissions of air pollutants from power plants. The method of determination»], Kiev : OEP «GRIFRE», 2002, 42 p. — The access mode: (the accessed date1.11.2015) — the screen name] (Ukr.).

7. [Thermal design of boiler units (The normative method), the 3-d edition, SPb. : Hublishing House «NPO Central’nyj kotloturbinnyj institut», 1998, 256 p.] (Rus.).

8. Lipov Yu. Ì., Tretyakov Yu. Ì. [Boiler units and steam generators], Moscow; Izhevsk : NIC Regular and Chaotic dynamics, 2003, 592 p.] (Rus.).

9. Graham D.Ð. Stack Gas Flow Rate. Calculation for Emissions Reporting – A Guide to Current Best Practice for the Operators of Coal Fired Boilers/ D. Ð. Graham, G. Salway & R. P. Stack – PT/07/LC422/R, 2007. — The access mode: (the accessed date 10.09.2015) — the screen name.

10. [The procedure of the gross contaminants’ emissions from TPPs’ boiler units. RD 34.02.305-98], Moscow : All-Russia Thermal Engineering Institute, 1998. (Rus.)

11. [The National plan to reduce emissions from large-scale combustion plants]. — The access mode: http://mpe.kmu.gov.ua (the accessed date 3.03.2016) — the screen name. (Ukr.).

12. Volchyn I., Haponych L. Estimate of the sulfur dioxide concentration at thermal power plants fired by Donetsk coal , Power Technology and Engineering, 2014, 48(3), pp. 218–221.

 

Gomelya M.D.1, Doctor of Technical Sciences, Professor, Hrabitchenko V.M.1, Trokhymenko G.G.2, Candidate of Technical Sciences

1 National Technical University of Ukraine «KPI», Kiev

37, Peremogy Ave., build. 4, 03056 Kiev, Ukraine, e-mail: shymasya@mail.ru

2 Admiral Makarov National University of Shipbilding, Nikolaev

9, Stalingrad Heroes Ave., 54025 Mykolaiv, Ukraine, e-mail: antr@ukr.net

 

Nitrates Removal from Water by Ion-Exchange Purification in the Presence of Chlorides and Sulfates

 

Nitrates, chlorides and sulfates removal from water by ion-exchange purification processes were examined. Relations on persorption of nitrates, sulfates and chlorides on ion-exchanger form, relations and level of anions concentrations in the solution were determined. It is shown that when using anion exchanger ÀÂ-17-8 in the basic; carbonate form or basic-carbonate form there alongside with extraction of anions from water it gets softer. When using the ion-exchanger in the basic form the softening is primarily caused by extraction of magnesium and in the carbonate form due to settling of calcium. It is determined that with different ratios of anions concentrations during ion-exchange purification there nitrates breakthrough occurs. The nitrates concentrations in the filtrate get higher with increase of sulfates and chlorides content as well as in proportion to saturation of the anion exchanger with nitrates and sulfates. Bibl. 17, Fig. 7, Table 1.

Key words: ion-exchange, regeneration, water softening, concentrations utilization.

 

References

 

1. Piatek K.B. Sources of nitrate in snowmelt discharge: evidence from water chemistry and stable isotopes of nitrate / Kathryn B. Piatek, Myron J. Mitchell, Steven R. Silva, Carol Kendal, Water, Air, and Soil Pollut, 2005, 165 (4), pp. 13–35.

2. Singleton Michael J. Tracking sources of unsaturated zone and groundwater nitrate contamination using nitrogen and oxygen isotopes at the Hanford Site, Washington / Michael J. Singleton, Katharine N. Woods, Mark E. Conrad, Donald J. Depaolo, P. Evan Dresel, Environ. Sci. and Technol, 2005, 39 (10), pp. 3563–3570.

3. Gomelja M.D. Removal of nitrates from purified municipal wastewater / M.D. Gomelja, O.P. Cheverda, T.O. Shabl³j, Vostochno-Evropejskij zhurnal peredovyh tehnologij, 2012, 2/6 (56), pp. 33–36. (Ukr.)

4. Oeztuerk N. Nitrate removal from aqueous solution by adsorption onto various materials / Nese Oeztuerk N., Ennil T. Bektash, J. Hazardous Mater, 2004, 112 (1–2), pp. 155–162.

5. Menkouchi Sahli M. A. Technical optimization of nitrate removal from ground water by electrodialysis using a pilot plant / Sahli M.A. Menkouchi, M. Tahaikt, I. Achary, M. Taky, F. Alhanouni, M. Hafsi, M. Elmghari, A. Ellmidaouia, Desalination, 2004, (10), pp. 359.

6. Polatides C. Electrochemical removal of nitrate ion from aqueous solution by pulsing potential electrolysis / C. Polatides, M. Dortsiou, G. Kyriacou, Electrochim. Acta, 2005, 50 (25–26), pp. 5237–5241.

7. Medjanceva D.G. Electrodialysis of nitrate solutions / D.G. Medjanceva, S.V. Shinkina, Izv. Vuzov Sev. Kav. region. Estestv. N, 2008, Spec. vyp, pp. 94–97, 136. (Rus.)

8. Ievleva O.S. Influence of low molecular weight amines to extract nitrates by nanofiltration / O.S. Ievleva, V.P. Badeha, V.V. Goncharuk, Himija i tehnologija vody, 2010, 32 (4), pp. 438–447. (Rus.)

9. Opportunities of low-pressure reverse osmosis in the purification of natural waters from mineral nitrogen / V.V. Goncharuk, M.M. Balak³na, V.O. Osipenko, D.D. Kucheruk, V.Z. Shvidenko, Dopov³di Nac³onal’no¿ akadem³¿ nauk Ukra¿ni, 2010, (3), pp. 194–199. (Ukr.)

10. Balakina M. N. Wastewater treatment from biogenic elements / M.N. Balakina, D.D. Kucheruk, Ju.S. Bilyk, V.O. Osipenko, Z.N. Shkavro, M.V. Aleksandrov, V.V. Goncharuk, Himija i tehnologija vody, 2013, 35 (5), pp. 386–397. (Rus.)

11. Lozovskij A.V. Investigation of the photocatalytic activity of Ag/TiO2 catalysts, the reduction reaction of nitrate ions in aqueous solutions / A.V. Lozovskij, I.V. Stoljarov, R.V. Prihod’ko, V.V. Goncharuk, Himija i tehnologija vody, 2009, 31 (6), pp. 631–642. (Rus.)

12. Mackiewicz Jolanta. Usuwanie azotanow z wod podziemnych na selektywnych zywicach anionjwymiennych IONAC / Jolanta Mackiewicz, Andrzej Dziubek, Ochr. Srod, 2005, (4), pp. 45–47. (Pol.)

13. Gomelja M.D. Evaluation of efficiency of anion exchange resin in the purification of water from nitrates / M.D. Gomelja, O.V. Goltvjanic’ka, T.O. Shabl³j, V³snik Nac³onal’nogo tehn³chnogo un³versitetu «KhP²», 2012, (1), pp. 84–90. (Ukr.)

14. Grab³tchenko V. M. Separation of sulfates and nitrates during ion exchange water desalination / V. M. Grab³tchenko, ². M. Trus, M. D. Gomelja, V³snik Nac³onal’nogo tehn³chnogo un³versitetu «KP²», 2014, (2), pp. 72–75. (Ukr.)

15. Kucherik G. V Investigation of softening processes in the mine water demineralization on anion exchange resin AB-17-8 / G.V. Kucherik, Ju.A. Omel’chuk, M.D. Gomelja,. Sh³dno-ªvropejs’kij zhurnal peredovih tehnolog³j, 2013, 2/11 (62), pp. 35–38. (Ukr.)

16. Trus I.N. Separation of chloride and sulfate during ion exchange demineralization of water / I.N. Trus, N.D. Gomelja, T.A. Shablij, Metalurgicheskaja i gornorudnaja promyshlennost’, 2014, (5), pp. 119–122. (Rus.)

17. Trus ². Electrocemical processing of mine water concentrates with obtaining available chlorine / ². Trus, V. Hrabitchenko, M. Gomelya , British Journal of Science, Education and Culture, 2014, (2), pp. 103–108.

 

Torchinskij A.I., Candidate of Technical Sciences, Ljashko A.Yu.

The Gas Institute of National Academy of Scienses of Ukraine, Kiev

39, Degtjarivska Str., 03113 Kiev, Ukraine, e-mail: tor_ingaz@mail.ru

 

Optimization of Thermal and Aerodynamic Operating Mode of Tunnel Kiln for Ceramic Bricks Calcination

 

Based on the research of operating tunnel furnaces and their analysis there were identified bottlenecks in the calcination process of ceramic bricks in tunnel kilns and proposed optimal thermal and aerodynamic modes, which determine energy-efficient and high-quality calcination of a ceramic brick in tunnel kilns, operating on natural gas. The basic principles of operation of a tunnel kiln, the distribution of the aerodynamic flow along the length of the furnace and the influence of the aerodynamic regime on the quality of calcination have been studied. The detailed analysis of the static pressure curve of the tunnel kiln was carried out. The optimal aerodynamic and thermal characteristics of ceramic bricks calcination. The concept of an availability of the necessary equipment and its optimum location is considered. The scheme of gas-air flows motion and the corresponding graph of the distribution of static pressure along the length of the working channel of a tunnel kiln are presented. The method of controlling the volume of heat carrier is considered. Bibl. 6, Fig.1.

Key words: tunnel kiln, calcination optimal mode, aerodynamic streams.

 

References

 

1. Torchinskij A.I., Ljashko A.Yu., Sergienko A.A. [Tunnel furnaces stock for ceramic brick manufacture modernization. 2. The furnaces heating system development], Energotechnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2010, (2), pp. 57–60. (Rus.)

2. Rogovoj M.I. [Heating engineering equipment of ceramic plants], Moscow : Strojizdat, 1983, 367 p. (Rus).

3. Nohratjan K.A. [Drying and burning in industry of building ceramics], Moscow : Gosstrojizdat, 1962, 603 p. (Rus).

4. Torchinskij A.I., Ljashko A.Yu., Krjachok Yu.N. [Tunnel furnaces stock for ceramic brick manufacture modernization. 3. The automatic control system development], Energotechnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2011, (1), pp. 69–73. (Rus.)

5. Pat. 28025 UA, MPK6 C 2 F 23 D 14/00. Gas burner, A.I. Torchinskij, G.N. Pavlovskij. — Publ. 16.10.2000, Bul. 5. (Rus.)

6. Pat. 27849 UA, MPK6 C 2 F 23 D 14/00. Gas burner, A.I. Torchinskij, G.N. Pavlovskij, Yu.M. Velichko. — Publ. 16.10.2000, Bul. 5. (Rus.)