Energy Technologies and Resource Saving 2-2017

 

Pikashov V.S., Candidate of Technical Sciences,

Velikodny V.A., Candidate of Technical Sciences

The Gas Institute of National Academy of Sciences of Ukraine, Kiev

39, Degtiarivska Str., 03113 Kiev, Ukraine, e-mail: vel_vldr@lan.com.ua

Features of the Use of Refinery Gases for Heating Furnaces and Boilers

Described experience of using refinery gases based on the research and development done by members of the Gas Institute of NAS of Ukraine, as well as other authors at oil refineries. The composition of such gases includes hydrocarbons of the paraffin 4, 26, 38, 410, etc., the unsaturated hydrocarbons 24, 36, 48 and others, in addition they contain a considerable amount of H2 and of small quantities of H2S. Shows the fundamental shortcomings of the designs of gas-burning devices intended for operation on natural gas and propane-butane mixture, used for combustion of refinery gases. This is caused by the high content of hydrogen in these gases, which has higher speed of flame propagation, and hydrogen sulfide, decomposing at relatively low temperatures. Are considered peculiarities of application of refining gases, the developed technology of combustion in furnaces and boilers, as well as the design of burners. Also are considered some safety measures when burning gases of oil refining, which differ from these when using natural gas. Bibl. 21, Fig. 2, Tab. 2.

Key words: refinery gases, combustion technology, burners.

 

References

1. Agabekov V.E., Kosyakov V.K. Neft i Gas. Tekhnologii i produkty pererabotki [Oil and Gas. Technologies and products of processing], Minsk : Belorusskaya Nauka, 2011, 459 p. (Rus).

2. Glinkov M.A. Osnovy obshchey teorii pechey [Basics of the general theory of furnaces], Moscow : Metallurgizdat, 1962, 576 p. (Rus).

3. Pikashov V.S., Petishkin S.A., Erinov A.E. Eksperimentalnyye issledovaniya trekh rezhimov slozhnogo teploobmena v plamennoy pechi [Experimental studies of three modes of complex heat exchange in a flame furnaces]. In: [Processes of directional heat exchange], Kiev : Naukova Dumka, 1979, p.142145. (Rus).

4. Ivanov Yu.V. Osnovy rascheta i proyektirovaniya gazovikh gorelok [Basics of calculating and designing gas burners], Moscow : Gostoptekhizdat, 1963, 360 p. (Rus).

5. Pat. 2013690 RF, MKI C 15 F 23 C 1/08. Sposob sovmestnogo szhiganiya zhidkogo i gazoobraznogo topliva [A method for co-incineration of liquid and gaseous fuels], V.S.Pikashov, V.A.Velikodny, V.M.Dmitriev, N.I.Sulgik, V.V.Trocenko, K.P. Kuzmenkov, R.A.Chekhovsky, P.N.Timoschenko. Publ. 30.05.94, Bul. 1 (Rus). 6. Pat. 871 Ukr., MKI UA871 C1 F 23 C 1/08. Sposib sumisnogo spaluvaniya ridkogo ta gasopodibnogo paliva [Co-firing method of liquid and gaseous fuels], V.S.Pikashov, V.O.Velikodny, V.M. Dmytrev, N.I. Sulgik, V.V.Trocenko, K.P.Kuzmenkov, R.A.Chekhovsky, P.N.Timoschenko. Publ. 15.01.93, Bul.2. (Ukr).

7. Pat. 49701 Ukr., MPK (2009) F 23 D 17/00. Duttoviy palnik dlya spalyuvannya gazovogo ta rdkogo paliva [Blowing torch for burning of liquid and gaseous fuel], V.S.Pikashov, V.O. Velikodny. Pub. 11.05.2010, Bul. 9. (Ukr).

8. Velikodny V.A., Pikashov V.S. Stadiynoye szhiganiye gazovogo i zhidkogo topliva v trubchatikh pechakh neftepererabytyvayushchikh proizvodstv [Stage combustion of gas and liquid fuels in tube furnaces of oil refineries], Promyshlennaya teplotekhnika [Industrial Heat Ingineering], 2014, (2), pp. 2938. (Rus).

9. Sigal I.Ya. Zashchita vozdushnogo basseyna pri szhiganii topliva [Air protection at fuel combustion], Leningrad : Nedra, 1988, 312 p. (Rus).

10. Velikodny V.A., Pikashov V.S. Tekhnologiya utilizatsii fenolnoy vody [The technology of utilization of phenolic water], Energotehnologii i resursosberezhenie [Energy Technology and Resource Saving], 2010, (2), pp. 6769. (Rus).

11. Pat. 94113 Ukr., MPK (2014) F 23 D 11/12, Palnik [Burner], V.O.Velikodny, V.S.Pikashov, L.M.Trotsenko, T.V.Vinogradova, S.V.Pravilo. Pub. 10.27.2014, Bul. 20. (Ukr).

12. Gorislavets S.P., Nevsky A.S., Pikashov V.S. K metodike rascheta kosvennogo napravlennogo radiatsionnogo teploobmena v pechakh s chasheobraznymi gorelkami [To the calculation procedure indirect directional radiative heat exchange in furnaces with a cup-shaped burners]. In: [Processes of directional heat exchange], Kiev : Naukova Dumka, 1979, pp. 6979. (Rus).

13. Staskevich N.A., Severinets G.N., Vigdorchik D.Ya. Spravochnik po gazossnabzheniyu i ispolzovaniyu gaza [Handbook of gas supply and use of gas], Leningrad : Nedra, 1991, 762 p. (Rus).

14. A.s. 954709 SU, MKI3, F 23 D 13/12. Radiatsionnaya gorelka [Radiation burner], S.P.Gorislavets, P.N.Timoshchenko, K.Ye. Makhorin, Yu.I.Gogluvaty. Pub. 30.08.82, Bul. 32. (Ukr).

15. Pat. 536 Ukr., MKI UA536 C1 F 23 D 14/12. Gazoviy radiatsiyniy palnik [Gas radial burner], V.M.Dmitryev, V.S.Pikashov, V.O.Velikodny, R.A.Chekhovsky, K.P.Kuzmenkov, P.N.Timoschenko, V.V.Veselov. Pub. 15.12.93, Bul. 2. (Ukr).

16. Pat. 46627 Ukr., MPK (2009) F 23 D 14/02. Inzhektsiyniy ploskopolumyaniy difuziyniy palnik [Injection flat flame burner], V.S.Pikashov, V.O. Velikodny, V.M.Dmitryev, L.M.Trotsenko, Pub. 25.12.2009, Bul. 24. (Ukr).

17. Pikashov V.S., Velikodny V.A., Osievsky V.A. Eksperimentalnoye issledovaniye koltsevogo inzhektora primenitelno k gorelke s ploskim plamenem [Experimental investigation of the ring injector with reference to a flat flame burner], Energotehnologii i resursosberezhenie [Energy Technology and Resource Saving], 2010, (5), pp.7680. (Rus).

18. Pikashov V.S., Velikodny V.A., Osievsky V.A. Szhiganiye gaza na ognevom stende inzhektsionnoy gorelkoy [Combustion of gas at the fire stand with an injection burner], Energotehnologii i resursosberezhenie [Energy Technology and Resource Saving], 2011, (1), pp.7477. (Rus).

19. Pat 113136 Ukr., MPK (2017) F 23 D 14/02. Ploskopolumeneviy duttoviy palnik [Flat flame blast burner], V.S.Pikashov, V.O.Velikodny, V.V.Alekseenko, A.B.Sezonenko, L.M.Trotsenko, A.A.Vasechko, T.V.Vinogradova. Publ. 10.01.2017, Bul. 1. (Ukr).

20. Pikashov V.S., Yerinov A.Ye., Velikodny V.A., Gorislavets S.P., Timoshchenko P.N. Vliyaniye stepeni chernoty ogneuporov na effektivnost izlucheniya radiatsionnykh gorelok (The influence of the degree of blackness of refractories on the radiation efficiency of radiation burners)], Khimicheskaya tekhnologiya, 1982 (1), pp. 3235. (Rus).

21. Velikodny V.A., Pikashov V.S. Vliyaniye radiatsionnykh kharakteristik poverkhnostey na teploobmen [Influence of radiation characteristics of surfaces on the heat transfer], Energotehnologii i resursosberezhenie [Energy Technology and Resource Saving], 2014 (1), pp. 6369. (Rus).

 

Nikitin Ye.Ye., Doctor of Technical Sciences

The Gas Institute of National Academy of Sciences of Ukraine, Kiev

39, Degtyarivska St., 03113 Kiev, Ukraine, e-mail: nikitin_ee@ukr.neta

Conceptual Positions of Modernization of Existing Inefficient District Heating Systems

The current situation in the sphere of district heating is analysed on the basis of use of the cognitive approach. The presence of closed chains of cause-effect relationships of negative factors and conflicts of target settings of the subjects in the field of district heating is shown. The conceptual model of energy efficient modernization of district heating systems is proposed. This model includes indicators of the current status of heat sources, networks and heat consumers, energetic and economic models, restrictions, procedure of forming and analysis of the mutual influence of the recommended projects. The quantitative data on indicators of the current state of district heating systems of the cities of Ukraine are presented. The interrelation between indicators of the current state and projects of energy efficient modernization of district heating systems is shown. Assessment of energy self-sufficiency of municipal district heating systems on condition of thermal modernization of buildings is carried out. The creation of energy management systems at the district heating enterprises is proposed. Bib. 6, Fig. 7, Tab. 5.

Key words: district heating systems, energy efficiency, energy management.

 

References

1. Nikitin Ye.Ye. Povyshenye enerhetycheskoy effektivnosty system tsentralyzovannoho teplosnabzheniya, Autoreferat dis. dokt. tehn. nauk, Kiev, 2015, 22 p. (Rus.).

2. Heat Roadmap Europe 2050. Study for the EU27. Perfomed by Aalborg University, Halmstad University and Plan Energy. http://www. euroheat.org.

3. Perspektivi rozvitku boenergetiki jak nstrumentu zamshhennja prirodnogo gazu v Ukrain. Analtichna zapiska BAU 12. http://uabio.org/img /files/docs/position-paper-uabio-12-ua.pdf.

4. Nikitin E.E. Optimizacija vybora energojeffektivnyh proektov modernizacii sistem teplosnabzhenija v uslovijah finansovyh ogranichenij, Problemi zagalno energetiki, 2011, (3), pp. 2532. (Rus.).

5. Nikitin E.E. Sozdanie sistem jenergeticheskogo menedzhmenta v sfere teploobespechenija naselennyh punktov, Energetika: Ekonomka, Tehnolog, Ekologja, 2012, (2), pp. 6169. (Rus.).

6. DSTU ISO 50001:2014. Energozberezhennja. Sistemi energetichnogo menedzhmentu. Vimogi ta nastanova shhodo vikoristannja. Nakaz Minekonomrozvytku Ukrainy vid 16 veresnja 2014 r. 1111 z 01.01.2015

 

Rudyka V.I., Candidate of Economic Sciences, Malyna V.P., Fedak S.P., Tsymbal O.A.

STATE ENTERPRISE GIPROKOKS, Kharkov

60, Sumska Str., 61002 Kharkov, Ukraine, e-mail: giprokoks@ic.kharkov.ua

The Main Trends in the Development of World Coke-Chemical Industry at the Present Stage

Materials describing the current state of the global coke industry and the main trends of its development are represented. Data on production of major coke producers in the world are also represented. It is shown that the slowdown of technical development of coke industry requires to compensate it by creating of flexible towards to coal base technology, which would contribute to produce coke of desired quality, reduction of cost production and reduce environmental pollution. Shown special significance of use of technology of coke dry quenching in coke production and the role of SE GIPROKOKS in the development and improvement of this energy saving technology, its promotion on the world market. Are considered the main technological aspects of two-products technology of coke production, that provide in addition to obtaining the coke as the main product to produce coke-oven gas containing more than 60 % hydrogen and 30 % carbon monoxide. Receiving the coke oven gas of a specified composition allows to significantly expand the scope of its application. Are considered technology directed to the expanding of coal raw materials base of coking and improving the quality of metallurgical coke. Bibl. 6, Fig. 2, Tab. 2.

Key word: coke, coke-chemical industry, coke-oven gas.

 

References

1. Rudyka V.I., Malyna V.P. Stal, ugol, koks 2014 i perspektiva : Analiticheskij obzor sammita Eurocoke Summit 2014 Proceeding, Edinburgh, Great Britain, 2830 May 2014, Coks i Himiya, 2014, (7), pp. 1525. (Rus.)

2. Neuwith R., Redman . Hight-Capacity Coke Oven Batteries, Eurocoke Summit 2014 Proceeding, Edinburgh, Great Britain, 2830 April 2014.

3. Gordon J. Technical Innovations in Cokemaking, Met Coke World Summit 2015 Proceeding, Pitsburgh, USA, 2729 Oct. 2015.

4. Malyna V.P. Dvuhproduktovaja tehnologija koksohimicheskogo proizvodstva, Spravochnik koksohimika, Ed. A.G.Starovojt, Kharkov : INZHEK, 2014, (2), pp. 683687. (Rus.)

5. Valia H.S. A futuristic perspective. Short course of alternative coke production technologies, Eurocoke Summit 2014 Proceeding, Edinburgh, Great Britain, 2830 April 2014.

6. Otte B., Kern W., Esposito A. Case Studies. Worldwide Installed New COG Treatment Plants, Eurocoke Summit 2015 Proceeding, Amsterdam, Holland, 1416 April 2015.

 

BondarV.P.

The Gas Institute of National cademy of Sciences Ukraine, Kiev

39, Degtyarevkaya Str., 04113 Kiev, Ukraine, e-mail:ig-secr@i.com.ua

Conditions of Minimal Loss of Exergy in Non-Equilibrium Processes of Actuating Mediums Heat Exchange

Heat exchange of actuating mediums in heat-exchanging apparatuses runs non-equilibrium (irreversibly), causing loss of operational part of heat. Two types of non-equilibrium process are distinguished: external and internal. External irreversibility is function of average temperature difference (irreversibility degree) and relation of incomplete recuperation on heat exchange boards of actuating mediums. Nature of internal non-equilibrium processes is related to friction work of actuating mediums that are practically impossible to be taken into account and described analytically. In this article, in order to define conditions of change of current temperature difference by exponential law, external and internal irreversibility are reviewed both mutual and separately. Change of current temperature difference by exponent is one of conditions of minimal numeric value of entropy production of system in non-equilibrium processes of actuating mediums heat exchange existence. Analysis, performed in article, along with example, are evidence that at all types of irreversible processes of actuating mediums heat-exchange, exist conditions of gaining the numeric value of minimum entropy production and exergy losses. Bibl. 8, Fig. 1.

Key words: heat-exchange, non-equilibrium process.

 

References

1. Gohstain D.P. [Modern methods of thermodynamic analysis of power units], Moscow : Jenergija, 1969, 367 p. (Rus.) 2. Malkov M.P., Danilov I.B., Zeldovich A.E. [Reference book on physical-technical basics of deep freezing], Moscow, Leningrad : Gosenergoizdat, 1963, 416 p. (Rus.)

3. Kirillin V.A., Sychev V.V., Sheydlin A.E. [Technical Thermodynamics], Moscow : Jenergija, 1974, 448 p. (Rus.)

4. Vargaftic N.B. [Referencebook on thermo-physical properties of gases and liquids], Moscow : Nauka, 1972, 720 p. (Rus.)

5. Miheev M.A. [Basics of heat transfer], Moscow, Leningrad : Gosenergoizdat, 1949. (Rus.)

6. Bondar V.P., Pyatnichko A.I. [Minimization of exergy losses in technology heat-exchangers], Himicheskaja Tehnologija, 1985, (2), 3537 p. (Rus.)

7. Martynovskiy V.S. [Analysis of actual thermo-dynamic cycles], Moscow : Jenergija, 1972, 216 p. (Rus.)

8. Buljandra O.F. [Tehnichna Termodinamika], Kiev : Tehnika, 2006, 320 p. (Ukr.)

 

Karp I.M., Academician of National Academy of Sciences of Ukraine, Doctor of Technical Sciences, Professor, Pyanykh K.E., Candidate of Technical Sciences, Nikitin E.E., Doctor of Technical Sciences

The Gas Institute of the National Academy of Sciences of Ukraine, Kiev

39, Degtyarivska Str., 03113 Kiev, Ukraine, e-mail: pyanykh@i.ua

The Problem of Disposal and Destruction of Sewage Sludge and its Solutions (Review)

Sewage sludge of cities usually are formed of municipal and industrial wastewater. They contain many harmful substances such as heavy metals, mineral substances, harmful substances of organic origin wastes (solid domestic wastes, feces, etc.), bacterial pollutants. The problem of utilizing and secure disposal of precipitation of urban wastewater (WWS) is a global. It is not solved fully by this time. European trends of sewage sludge disposal are the reduction or total ban on their agricultural use and disinfecting organic pollutants by thermal methods. Acquires distribution WWS combustion in a fluidized bed. Low-temperature technology of sewage sludge disposal in which the heavy metals remain in the solid residue of the process are interesting. This are pyrolysis, oxidative pyrolysis and gasification. The Gas Institute of NAS of Ukraine conducted preliminary tests of utilizing of dry granular WWS in the reversed process of gasification. Producer gas and pellets with high hardness were obtained; pellets can be used as fillers in construction. Technological scheme of the industrial process is proposed. Bibl. 24, Fig. 7, Tab. 1.

Key words: sewage sludge, utilizing, disinfection, combustion, gasification.

 

References

1. Turovskii I.S. Obrabotka osadkov stochnykh wod, Moscow : Stroyizdat, 1988, 257 p. (Rus.)

2. Evilevich A.Z., Evilevich M.A. Utilizatsiia osadkov stochnykh vod, Lenngrad : Stroyizdat, 1988, 248 p. (Rus.) 3. Lotosh V.E. Utilizatsiia kanalizatsionnykh stokov i osadkov. Access mode: http: // lotosh.1gb.ru/fopp/txt/sewageutil.pdf. (Rus.)

4. Protasov V.F., Molchanov A.V. Ekologiia, zdorovie i prirodopolzovaniie v Rossii, Moscow : Fhinansy i statistika, 1995, 528 p. (Rus.)

5. Good practices in sludge management, Baltic Sea Region, Project EU PURE. Access mode: http: // www.purebalticsea.eu/index.php/gpsm :good _practices:ru

6. Glatzer A., Schild H. Operational Experiences from Austrias First Medium Sized Sewage Sludge Mono-Incineration Plant in Grosswilfersdorf Austria, Proceedings of 4th Central European Biomass Conference, Graz, Austria, 1518 Jan., 2014, Graz, 2014.

7. Karelin A.O., Karelin O.N., Luchkevich V.S. Sooruzheniia po ochistke gorodskikh kanalizatsionnykh stokov kak istochniki zagriazneniia atmosphery, Gigiena i sanitaria, 2000, (3), pp. 1214. (Rus.)

8. Steiner A. Verfahren zum abstoppen von faulprocessen in faulsxhlamm // Pat. 402289. (Austria). Priority 30.12.1994, Publ. 25.03.1997.

9. Feldmann J., Kleimann J. Fluchtige Metallverbindungen im Faulus, Korrespond. Abwasser, 1997, 44 (1), pp. 99104. (De)

10. Bondar O.I., Lozovitsky P.S., Mashkov O.A., Lozovitsky A.P. Ekologichnii stan nakopychenykh osadiv stichnykh vod m. Kieva, Kiev : Derzhavna ekologichna akademiia pisliadiplomnoii osvity ta upravlinnia, 2016, 17 p. (Ukr.)

11. Gumen S.G., Bolshemennikov A.J., Marich K.V. Obrabotka osadkov stochnykh vod na tsentralnoii stantsii aeratsii S.-Peterburga, VST, 1998, (10), pp. 1013. (Rus.)

12. Klarschlammverbrennung bei angelaufen, Chem.- Ing.-Tech, 1995, 67 (4), pp. 364365. (De)

13. Kopp M., Kahlke J., Schulte W. Mitverbrenning von Klarschlammen in Kohleversungsanlagen, All. Pap., 1995, 119 (14), pp. 297299.

14. Utilizatsiia osadkov bytovykh stochnykh vod. http: //www. stroy-spravka.ru/.../utilizatsiyaosad kov-bytovykh-stochnyk. (Rus.)

15. Tabasaran O. La pirolisi comt metodo attnale di trattamentoper il recupero energetico dei rofinti, Ing. amient Inger in e depur, 1979, 8 (1), . 4045.

16. Utilizatsiia osadkov stochnych vod bez ilovykh ploschadok putem pererabotky v tovarnuiu produktsiiu. Access mode: http: //pirolizeco.ru (Rus.)

17. NamestnikovV.V., Mezheritskii S.E., Philippov Yu.M., Krivenko I.V., Marchenko G.N., Panarin A.V., Andreeva T.V., Patent 2176264 Ru. publ. 27.11.2001. (Rus.)

18. Timofeeva S.S., Baranova A.N., Babaian A.E., Zubareva L.D. Kompleksnaia otsenka tekhnologii utilizatsii osadkov stochnykh vod galvanicheskikh proizvodstv, Khimiia i technologiia vody, 1991, 13 (1), pp. 6871. Access mode: https://www. google.com.ua/webhp?sourceid=chrome-instant- &ion=1&espv=2&ie=UTF-8 (Rus.) 19. Antropov A.P., Zaichenko V.M., Kuftov A.F., Umnova O.M. Sposoby utiliztsii osadka stochnyk vod s territorii ochistnykh sooruzhenii. Prezentatsiia doklada Obiedinennogo Instituta vysokikh temperature RAN i MGEU im. Baumana. Access mode: http: www.reenfor.org/upload/files/7ea57ef33af- 7b2401ef8892008d9ac2e.pdf (Rus.)

20. Gudymov E.A., Rodionov B.N. Gazifikatsiia osadkov stochnykh vod i bytovogo musora, Ekologiia i promyshlennost Rossii, 1997, Nov., pp. 1112. (Rus.)

21. Polucheniie sintezgaza, teplovoi i elektricheskoi energii v gasogeneratornoi ustanovke iz tverdykh ostatkov kanalizatsionnykh stokov. Access mode: http: www.relyef.com/wp-content/uploads /2015 /12/ Prezentatsiia dlia investorov. pdf (Rus.)

22. Utilizatsiia i pererabotka ilovykh osadkov stochnykh vod. Access mode: http://singaz.com. ua/pererabotka-ilovyh-osadkov.html (Rus.)

23. Poperednie TEO proektu Budivnytstvo tsekhu utylizatsii osadu pislia mekhanichnogo znevodnennia na tsentralnykh kanalizatsiinykh ochysnykh sporudakh Livogo berega TSOS 1 m. Zaporizhzhia. Skoregovana redaktsiia : Proekt USAID Munitsipalna energetychna rephorma v Ukraini, 2016, pp. 33. (Ukr.)

24. Proekt rekonstruktsii ochysnykh sporud ta budivnytstvo stantsii vyrobnytstva biogasu u m.Lvovi. Ponovlennia Tekhniko-ekonomichnogo obgrutuvannia, Kontract EBRR: 29880/SWUK-2014-09-04. (Ukr.)

 

Kolesnyk V.V.1, Candidate of Technical Sciences, Orlyk V.M.2, Candidate of Technical Sciences,
Khvastukhin Yu.I.2, Doctor of Technical Sciences,

Kostohryz K.P.2, Candidate of Technical Sciences, Zhaivoronok V.A.2

1 The Kiev State Maritime Academy, Kiev

9, Kyrylivska Str., 04071 Kiev, Ukraine, e-mail: kolesnyk@email.ua

2 The Gas Institute of National cademy of Sciences Ukraine, Kiev

39, Degtyarivska Str., 03113 Kyiv, Ukraine, e-mail: orlykvol@gmail.com

Calcination of Small-Grained Limestone in Fluidized Bed of Inert Granular Material. Part 1. Mathematical Description of Limestone Particle Calcinations Process

A detailed mathematical description of the endothermic process calcination of limestone particles is presented while they are passing high temperature zone of fluidized bed inert particles. When constructing a mathematical model of thermochemical conversion of limestone particles, are made the following key assumptions: large-grained inert particles are in the mode ideal mixing, they are acting as a thermostat, and limestone particles are removed from the fluidization bed with the heating gas in the mode piston flow; calcium oxide particles formed as a result of thermochemical processing, retain the original amount of limestone particles with a corresponding change in the current volumetric particle porosity; pressure and density of the carbon dioxide produced in the calcination process on the surface of unreacted CaCO3 and which are determining the reaction rate of calcination are equal to the value of these parameters in the radial pores of particles; particle heating is provided only due to the thermal conductivity of the solid phase and by intensity of heat exchange limestone particles inert particles of fluidized bed. Bibl. 7.

Key words: limestone, calcium carbonate, fluidized bed, mathematical model.

 

References

1. Volchin .A., Dunavska N.., Gaponich L.S., Chernyavskij M.V., Topal O.., Zasyadko Ya.., Perspektyvy vprovadzhennya chystyh vuglnyh tekhnologj v energetyku Ukrainu, Kiev: GNOZS, 2013, 308 p. (Ukr.)

2. Borgward H.R. Calcination kinetics and surface area of dispersed limestone particles, AIChE Journal, 1985, 31 (1), pp. 103111.

3. Geoffrey D. Silcox, John C. Kramlich, David W. Pershing. A mathematical model for the flash calcination of dispersed CaCO3 and Ca(OH)2 particles, Ind. Eng. Chem. Res., 1989, 28, pp. 155160.

4. Corey R. Milne, Geoffrey D. Silcon, David W. Pershing, David A. Kirchgessner, Calcination and sintering models for application to high-temperature, short-time sulfation of calcium-based sorbents, Ind. Eng. Chem. Res., 1990, 29, pp. 139149.

5. Hrvoje Mikulcic, Eberhard von Berg. Numerical modeling of calcination reaction mechanism for cement production, Chem. Eng. Sci, 2012, 69, pp. 607615.

6. Due Hai Do, Eckehard Specht, Determination of reaction coefficient, thermal conductivity and pore diffusivity in decomposition of limestone of different origin, Proceeding of the World Congress on Engineering and Computer Science, 2011, 11.

7. Naiyi Hu, Alan W. Scaroni, Calcination of pulverized limestone particles under furnace injection condition, Fuel, 1996, 75 (2), pp. 177186.

 

Shamanskyi S.I., Candidate of Technical Sciences, Boichenko S.V., Doctor of Technical Sciences, Professor,

Matvyeyeva I.V., Doctor of Technical Sciences

National Aviation University, Kiev

1, Komarov Ave., 03058 Kiev, Ukraine, e-mail: shamanskiy_s_i@ukr.net, chemmotology@ukr.net

Technological Foundations of Environmentally Friendly Organization of a Sewage System

Modern sanitary sewage systems, which apply traditional methods of sewage water treatment, not always can provide acceptable quality of treated waters for their environmentally safe discharge into water bodies. In addition, applied methods of sewage sludge utilization, which are produced during treatment processes, lead to substantial negative influence on environment. All of these things result in appearance of ecological risks, related to functioning of sewage systems. Because of this, there is a necessity for additional sewage water treatment and for improvement sewage sludge utilization methods. Virtues and shortcomings of modern methods of sewage water aftertreatment and sewage sludge utilization are analyzed in this paper. There is proposed a new arrangement of a sanitary sewage system. The system applies sewage water aftertreatment in photobioreactors by using the water as environment for energy microalgae cultivation and producing liquid biofuel of the third generation out of them. It also applies sewage sludge digestion in anaerobic installations with producing methane enriched biogas, environmentally safe organic fertilizer and carbon dioxide. There is also proposed to utilize carbon dioxide in photobioreactors for providing the process of photosynthesis. Bibl. 18, Fig. 1.

Key words: biofuel, renewable energy sources, aftertreatment, sewage system, sewage sludge utilization.

 

References

1. Yakovlev S.V., Karelin Ya.., Zhukov .I., Kolobanov S.. [Sewerage], oscow : Strojizdat, 1975, 632 p. (Rus.)

2. Danilovich D.. [The best available technology for municipal sewerage], Vodosnabzhenie i sanitarnaja technika, 2012, (3), pp. 613. (Rus.)

3. ITS 102015. Informational and technical reference book for the best available technologies. Sewage water treatment with centralized sewage systems of towns and towns districts, Moscow : Bjuro NDT, 2015, 377 p. (Rus.)

4. Danilovich D.. [Energy and resource approach to sewage water treatmenr and sewage sludge processing], Nailuchshie dostupnyje technologii vodosnabzhenija i vodootvedenija, 2014, (4), pp. 3647. (Rus.)

5. Vanjushina .Ya., Vett B., Hell . [The best examples of sewage water treatment plants operation: t. Shtrass (Austria)], Nailuchshie dostupnyje technologii vodosnabzhenija i vodootvedenija, 2014, (4), pp. 3950. (Rus.)

6. Akpor O.B. Wastewater Effluent Discharge: Effects and Treatment Processes, 3rd International Conference on Chemical, Biological and Environmental Engineering, IPCBEE, 2011, 20, pp. 8591.

7. Direnko .., Kocar .. [Applying aquatic plants for treatment of sewage and drenage waters], SOK (santechnika, opalennja, kondycionuvannja), 2006, (4), pp. 1215. (Rus.)

8. Kadam A., Oza G., Nemade P., Dutta S. and Shankar H., Chemosphere, 2008, 71, pp. 975981.

9. Shamanskyi S.I. and Nestorjak D.M. Bioconversion of Solar Energy as a Perspective Direction in Alternative Energy, International Theoretical and Practical Conference Green Energy, Kiev, 1719 July 2012, Kiev, 2012, pp. 371372.

10. Kravchenko .P. To the question of reasonability of cultivating and using of microalgae for motor biofuel production, International Theoretical and Practical Conference Green Energy, Kiev, 1719 of July 2012, iev, 2012, pp. 5563.

11. Sorokina K.N., Yakovlev V.A., Piligaev A.V., Kukushkin R.G., Pel'tek S.E., Kolchanov N.A., Parmon V.N. Potential of microalgae using as raw material for bioenergetic, Kataliz v promyshlennosti, 2012, (2), pp. 6372. (Rus.)

12. Chen Y.,Wang J., ZhangW., Chen L., Gao L., Liu T. Forced Light/Dark Circulation Operation of Open Pond for Microalgae Cultivation, Biomass and Bioenergy, 2013, 56, pp. 464470.

13. Sierra E., Acian F.G., Fernandez J.M., Garcia J.L., Gonzalez C., Molina E. Characterization of a Flat Plate Photobioreactor for the Production of Microalgae, Chemical Engineering Jornal, 2008, 138 (13), pp. 136147. 14. Sato T., Usui S., Tsuchiya Y., Kondo Y. Invention of Outdoor Closed Type Photobioreactor for Microalgae, Energy Convers. Manag., 2006, 47 (6), pp. 791799.

15. Zlang K.A.I., Kojima E. Effect of Light Intensity on Colony Size of Microalga Botryiococcus Braunii in Bubble Column Photobioreactors, J. Ferment. Bioeng., 1998, 86 (6), pp. 573576.

16. Shamanskyi S.I. Continously working installation for solar energy bioconversion, Naukoemni technologii, 2015, (2), pp. 115119. (Ukr.)

17. Pruvost J., van Vooren G., Le Gouic B., Couzinet- Mossion A., Legrand J. Systematic Investigation of Biomass and Lipid Productivity by Microalgae in Photobioreactors for Biodiesel Application, Bioresource Technology, 2011, 102 (1), pp. 150158.

18. Shamanskyi S.I., Boichenko S.V. Energy efficient and environmental friendly technology of stabilizing of airline enterprises wastewater sludges, Vostochno- Evropeiski zhurnal peredovych technologii, 2015, 5/8, pp. 3945. (Rus.)

 

Torchinskij A.I.1, Candidate of Technical Sciences, Ljashko A.Yu.1, Chichua Z.2

1 The Gas Institute of National Academy of Scienses of Ukraine, Kiev

39, Degtjarivska St., 03113 Kiev, Ukraine, e-mail: tor_ingaz@mail.ru

2 LLC Metekhis ceramic, St. Metekhi

Kaspi, St. Metekhi, Georgia, e-mail: info@bricks.ge

Modernization of Tunnel Kiln for Ceramic Bricks Calcination LLC Metekhis ceramics (Georgia)

Gas-burning devices of SG Series and the system of automatic control of firing ceramic bricks for the tunnel kiln by production of Gas Institute of NAS of Ukraine were mounted at the enterprise LLC Metekhis ceramics (Georgia. The analysis of the design features of this type of furnaces was made by the Bulgarian project. The advantages and disadvantages caused by outdated thermal equipment and the lack of aerodynamic parameters of automatic control systems are also considered. The fundamental scheme of the kiln is designed with a new thermo-heating engineering equipment and automatics for thermal and aerodynamic modes regulation The influence of new heating engineering equipment and automatics is considered for the quality of manufactured products, kiln productivity and natural gas specific consumption. Bibl. 5, Fig. 2

Key words: tunnel kiln, ceramic brick, gas-burning device, firing quality, modernization.

 

References

1. Rogovoj M.I. [Heating engineering equipment of ceramic plants], Moscow : Strojizdat, 1983, 367 p. (Rus.)

2. Torchinskij A.I., Ljashko A.Yu., Sergienko A.A.N. [Tunnel furnaces stock for ceramic brick manufacture modernization. 2. The furnaces heating system development], Energotechnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2010, (2), pp. 5760. (Rus.)

3. Torchinskij A.I., Ljashko A.Yu., Krjachok Yu.N. [Tunnel furnaces stock for ceramic brick manufacture modernization. 3. The automatic control system development], Energotechnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2011, (1), pp. 6973. (Rus.)

4. Pat. 28025 Ukr., MPK6 C 2 F 23D 14/00. Gas burner / A.I. Torchinskij, G.N. Pavlovskij. Publ. 16.10.2000, Bul. 5. (Rus.).

5. Pat. 27849 Ukr., MPK6 C 2 F 23 D 14/00. Gas burner / A.I. Torchinskij, G.N. Pavlovskij, Yu.M. Velichko. Publ. 16.10.2000, Bul. 5. (Rus.)