Energy Technologies and Recourse Saving, 4-2016

 

Chernyavskiy M.V.1, Candidate of Technical Sciences, Provalov O.Yu.1, Candidate of Technical Sciences, Beztcennyj I.V.1, Moyiseenko O.V.2

1 Coal Energy Technology Institute of National Academy of Sciences of Ukraine, Kiev

19, Andriyivska Str., 04070 Kiev, Ukraine, ĺ-mail: mchernyavski@yandex.com

2 Ukraine Technical Committee for Standardization TC 92 «Coal and products of its processing», Kiev

9, Gnat Yura Str., 03148 Kiev, Ukraine, ĺ-mail: tcu92.kiev@ukr.net

Development of Methods and Practical Experience in the Preparation and Pulverized Combustion of Anthracite and Bituminous Coal Mixture at Zmiev TPP

With the decline in the supply of Donetsk anthracite and semi-anthracite as a result of fighting in the east of Ukraine, for the first time in the world it managed to solve scientific and practical problems and to organize producing of homogeneous mixture of anthracite with 27–32 % bituminous coal at Zmiev TPP fuel stock, as well as safe and effective mixture combustion in TP-100, TPP-210, TPP-210A boilers with performance characteristics and technical and economic indicators not different from those of the Donetsk semi-anthracite. For state-owned coal enterprises it gave additional volume of sales, and for thermal power plant it has significantly expanded fuel base, made it possible to reduce the night unloading unit loads of down to 65 % without oil or gas addition due to more stable ignition and combustion of coal mixture compared with anthracite. Bibl. 10, Fig. 11.

Key words: anthracite, semi-anthracite, bituminous coal, mixture, homogeneity, volatile yield, sampling, pulverized combustion, boiler, coal-pulverization system.

 

References

1. Chernyavskiy M.V. [Modern problems of fuel supply and fuel consumption at TPPs in Ukraine], Jenergotehnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2015, (3), pp. 5–19. (Ukr.) 2. Chernyavskiy N.V. [Fuel supply and fuel consumption at TPPs in Ukraine: history, current status and problems of introduction of steam coal market], Novini energetiki [Energy news], 2015, (11), pp. 26–29. (Rus.) 3. Chernyavskiy N.V., Rohman B.B., Provalov A.Ju., Kosjachkov A.V. [Experience of imported coals burning in TPP and CHP boilers], Jenergotehnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2015, (4), pp. 15–23. (Rus.)

4. Djedov V.G., Kozemko O.M., Achkasov Je.M., Chernyavskiy M.V. [Experience of experimental anthracite and bituminous coal mixture (G/A) burning for Tripilska TPP], Energetyka ta elektryfikacija [Energy and Electrification], 2010, (3), pp. 49–55. (Ukr.)

5. Chernyavskiy N.V., Golenko I.L., Filippenko Ju.N., Rudavina E.V. [Experience of fuel mixtures burning at TPPs in Ukraine and the requirements for their preparation], Sovremennaja nauka [Modern Science], Dnipropetrovsk : Triacon, 2010, (3), pp. 104–108. (Rus.)

6. Chernyavskiy N.V., Provalov A.Ju., Golenko I.L. [Preparation and burning of fuel mixtures at TPPs in Ukraine], Issledovanija i opyt szhiganija topliv : Sb. dokl. 5th nauchno-prakt. konf. «Mineral’naja chast topliva, shlakovanie, ochistka kotlov, ulavlivanie i ispolzovanie zoly» [Research and experience of burning fuels: Papers of 5th Conf. «Mineral part of fuel»], Cheljabinsk, 7–9 June, 2011, Cheljabinsk : Urals Power Engineering Center, 2011, 1, pp. 162–169. (Rus.)

7. Filippenko Yu.N., Skljar P.T., Harlova E.V., Rudavina E.V., Chernyavskiy N.V. [Preparation of coal fuel for pulverized combustion at thermal power plants], Zbagachennja korisnih kopalin [Mineral processing], 2013, Iss. 53. (Rus.)

8. Bezcennyj I.V., Bondzyk D.L., Chernyavskiy M.V., Dunajevs’ka N.I. [Calculation of the burning dynamics of anthracite and bituminous coal mixtures in the case of streaming reactor], 12th Mizhnar. nauk.-prakt. konf. «Vugil’na teploenergetyka : Shljahy rekonstrukcii’ ta rozvytku» [«Coal thermal power: ways for reconstruction and development»], Kiev, 21–24 Sept. 2016, Kiev : Institut vugil’nyh energotehnologij NAN Ukrainy, 2016, pp. 128–130. (Ukr.)

9. Majstrenko O.Ju. [Basic laws of combustion and gasification of high-ash coal in different modifications of fluidized bed] : Avtoref. dys. ... dokt. tehn. nauk, Kiev, 1999, 35 p. (Ukr.) 10. Chernyavskiy M.V., Provalov O.Ju., Bezcennyj I.V.et al. [Features of the fuel supply TPPs and CHPs in Ukraine in modern conditions. Development and implementation of methods of non-project fuels and fuel mixtures pulverized combustion], 12th Mizhnar. nauk.-prakt. konf. «Vugilna teploenergetyka : Shljahy rekonstrukcii ta rozvytku» [«Coal thermal power: ways for reconstruction and development»], Kiev, 21–24 Sept. 2016, Kiev : Institut vugil’nyh energotehnologij NAN Ukrai’ny, 2016, pp. 84–88. (Ukr.)

 

Moraru V.N., Candidate of Chemical Sciences

The Gas Institute of National Academy of Sciences of Ukraine, Kiev

39, Degtyarivska Str., 03113 Kiev, Ukraine, e-mail: vasily.moraru@gmail.com

Nanofluids Applying for Emergency Cooling of High Loaded Equipment

Based on these data and a brief literature review we have examined the principled possibility of using nanofluids for emergency cooling of high-energy equipment. With that end in view, the possibility of emergency cooling of an overheated heat transfer surface using nanofluids in the case of a boiling crisis is explored by means of synchronous recording of changes of main heat transfer parameters of boiling water over time. Two nanofluids are tested, which are derived from a mixture of natural aluminosilicates (AlSi-7) and titanium dioxide (NF-8). It is found that the introduction of a small portions of nanofluid into a boiling coolant (distilled water) in a state of film boiling (theater > 500 °C) can dramatically decrease the heat transfer surface temperature to 130–150 °C, which corresponds to a transition to a safe nucleate boiling regime without affecting the specific heat flux. The fact that this regime is kept for a long time at a specific heat load exceeding the critical heat flux for water and theater = 125–130 °C is particularly important. This makes it possible to prevent a potential accident emergency (heater burnout and failure of the heat exchanger) and to ensure the smooth operation of the equipment. It is shown that cooling of energyloaded equipment by using aluminosilicate NFs is quite realistic and cost-effective process. Bibl. 22, Fig. 4, Tab. 1.

Key words: nanofluids, heat exchange, emergency cooling, heating surface, deposits.

References

1. Bondarenko B.I., Moraru V.N., Sydorenko S.V., Komysh D.V., Khovavko A.I., Snigur A.V. Some peculiarities of heat exchange at pool boiling of aluminosilicates-water based nanofluids, Proceedings of the 8th International Symposium on Heat Transfer, Beijing, China, Oct. 21–24, 2012, pp. 181–190, ISHT8-04-05.

2. Bondarenko B.I., Moraru V.N., Sydorenko S.V., Komysh D.V., Khovavko A.I. Nanofluids for Power Engineering : Effect of stabilization on the critical heat flux at boiling, Technical Physics Letters, 2012, 38 (9), pp. 853–857.

3. Bondarenko B.I., Moraru V.N., Ilienko B.K., Khovavko A.I., Komysh D.V., Panov E.M., Sydorenko S.V., Snigur O.V. Study of a heat transfer mechanism and critical heat flux at nanofluids boiling, International Journal of Energy for a Clean Environment, 2013, 14 (2–3), pp. 151–168.

4. Bondarenko B.I., Moraru V.N., Sidorenko S.V., Svjatenko A.M., Kozhan A.P., Hovavko A.I., Komysh D.V., Snigur A.V., Volkov N.V. Issledovanija po sozdaniju nanozhidkostej dlja jenergetiki, Jekologija i promyshlennost, 2013, (3), pp. 51–55.

5. Moraru V.N., Komysh D.V., Hovavko A.I., Snigur A.V., Gudkov N.N., Sidorenko N.A., Marinin A.I. Nanozhidkosti na osnove ukrainskih prirodnyh aljumosilikatovperspektivnye teplonositeli dlja jenergetiki, Jenergotehnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2015, (1), pp. 22–32. (Rus.) 6. Moraru V.N., Komysh D.V., Hovavko A.I., Snigur A.V., Gudkov N.N., Sidorenko N.A. Vlijanie sostojanija poverhnosti nagreva na intensivnostteplootdachi pri kipenii nanozhidkostej, Jenergotehnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2015, (2), pp. 25–33. (Rus.)

7. Bondarenko B.I., Moraru V.N., Sydorenko S.V., Komysh D.V., Khovavko A.I. Nanostructured Architectures on the Heater Surface at Nanofluids Boiling and Their Role in the Intensification of Heat Transfer, Nanoscience and Nanoengineering, 2016, 4 (1), pp. 12–22.

8. Kandlikar S.G. A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation, J. Heat Transfer-Transactions ASME, 2001, 123, pp. 1071–1079.

9. Patent RU 2433949, Int.Cl. B 82 B 3/00 (2006.01), B 82 Y 40/00 (2011.01). Method to form nanorelief on heat-exchange surfaces of products, Ju.A.Kuzma-Kichta, A.V.Lavrikov, N.Ja.Parshin, V.N.Turchin, D.N.Ignat’ev, Ju.P.Shtefanov, Publ. 20.11.2011, Bull. 32.

10. Lu Yen-Wen, Kandlikar S.G. Nanoscale Surface Modification Techniques for Pool Boiling Enhancement — A Critical Review and Future Directions, Heat Transfer Engineering, 2011, 32, pp. 827–842.

11. Richard Furberg. Enhanced Boiling Heat Transfer on a Dendritic and Micro-Porous Copper Structure, Doctoral Thesis by Richard Furberg, KTH School of Industrial Engineering and Management Department of Energy Technology, Stockholm, Nov. 2011, 86 p., ISBN 978-91-7501-163-9.

12. Rahul A. Bhogare, B.S.Kothawale. A Review on applications and challenges of Nano-fluids as coolant in Automobile Radiator, International Journal of Scientific and Research Publications, 2013, 3 (8), pp. 1–11, ISSN 2250–3153.

13. Rahul A. Bhogare, B.S.Kothawale. Performance investigation of Automobile Radiator operated with Al2O3 based nanofluid, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 2014, 11, Iss. 3, Ver. V, pp. 23–30, e-ISSN: 2278–1684, p-ISSN: 2320–334X

14. Sandesh S. Chougule, S.K.Sahu, Thermal Performance of Automobile Radiator Using Carbon Nanotube-Water Nanofluid Experimental Study, Journal of Thermal Science and Engineering Applications, 2014, 6, pp. 041009-1.

15. Arturo de Risi, Marco Milanese, Gianpiero Colangelo and Domenico Laforgia, High Efficiency Nanofluid Cooling System for Wind Turbines, Thermal Science, 2014, 18 (2), pp. 543–554.

16. Timofeeva Elena V. Nanofluids for Heat Transfer — Potential and Engineering Strategies. In: Two Phase Flow, Phase Change and Numerical Modeling, Dr. Amimul Ahsan (Ed.), InTech Rijeka, Croatia, 2011, pp. 435–450, ISBN: 978–953–307–584–6.

17. Pham Q.T., Kim T.I., Lee S.S., Chang S.H., Enhancement of critical heat flux using nano-fluids for Invessel Retention-External Vessel Cooling, Applied Thermal Engineering, 2012, 35, pp. 157–165.

18. US Patent 2008/0212733 A1 (376/282) — Nuclear power plant using nanoparticles in emergency systems and related method. — Filed on March 2, 2007. Published on September 4, 2008.

19. US Patent 2008/0219396 A1 (376/282) — Nuclear power plant using nanoparticles in closed circuits emergency systems and related method. — Filed on March 2, 2007. Published on September 11, 2008.

20. Pat. 100592 Ukr., MPK (2013.01) C 09 K 5/00; B 82 B 1/00, 3/00; B 82 Y 30/00. Teplonosłj na osnovł vodnoż suspenzłż nanochastinok, B.˛.Bondarenko, V.N.Moraru., S.V.Cidorenko, V.M.Dmłtr łĺv, O.˛.Hovavko, D.V.Komish, Publ. 10.01.2013, Bull. 1. (Ukr.)

21. Bondarenko B.I., Moraru V.N., Sidorenko S.V., Komysh D.V. Nanofluids for Power Engineering: Emergency Cooling of Overheated Heat Transfer Surfaces, Technical Physics Letters, 2016, 42 (7), pp. 675–679.

22. Tarasevich Yu.I. [The structure and surface chemistry of layered silicates], Kiev : Naukova Dumka, 1988, 248 p. (Rus.)

 

Sviatenko O.M.1, Candidate of Technical Sciences, Kotov V.G.1, Candidate of Technical Sciences, Khovavko A.I.1, Candidate of Technical Sciences, Bondarenko B.I.1, Academician of NAS of Ukraine, Doctor of Technical Sciences, Professor, Filonenko D.S.1, Nebesniy A.A.1, Vishnevsky A.A.2, Candidate of Geological and Mineralogical Sciences

1 The Gas Institute of National Academy of Science of Ukraine, Kiev

39, Degtyarivska Str., 03113 Kiev, Ukraine, e-mail: neba79@gmail.com

2 Institute of Geochemestry, Minerology and Ore Formation of National Academy of Sciences of Ukraine, Kiev

34, Acad. Palladin Ave., 03680 Kiev, Ukraine, e-mail: vyshnevskyy@igmof.gov.ua

Research of the Technology of Carbon Nanotubes Production in Gas Mixtures Contained Carbon Monoxide

Analysis of existing methods of carbon nanotubes (CNTs) obtaining shows the advantages of the method of catalytic synthesis. This method is differed by relatively low energy consumption, use of cheap raw materials, an ability to create high-performance industrial production, relative simplicity of equipment and also by the lack of thorough cleaning of the resulting product. Catalytic synthesis methods differ one from another by use of raw carbon material type, catalyst type on which carbon is deposited and temperature regimes. As the basic technology it was used process at moderate temperatures (in the range of a netic-thermodynamic maximum of passing of Bell-Boudoir reaction). Products of air conversion of natural gas with strictly controllable hydrogen, carbon and oxygen potentials were used in a role of reactionary gas. Also, a possibility of CNTs manufacturing from a producer gas was explored. Maximum output of a final product has been achieved on an iron-ore concentrate of the Inguletsky ore mining and processing enterprise (Krivoi Rog) which used among many in the capacity of the catalyst of CNTs formation. Bibl. 4, Fig. 3.

Key words: carbon nanotubes, reduced iron ore, products of natural gas conversion, generator gas.

 

References

1. Mishchenko S.V., Tkachev A.G. [Carbon nanomaterials. Production, properties and applications], Mosńow : Mashinostroenie, 2008, 320 p. (Rus.)

2. Rostovcev S.V. [Theory of metallurgical processes], Ěoscow : Metallurgizdat, 1956, 515 p. (Rus.)

3. Gomzikov A.I. [Structure and texture formation in electrotechnical steel, manufactured using the process

of nitriding] : Autoreferat … Candidate of Technical Sciences, Ekaterinburg, 2005, 19 p. (Rus.)

4. Spravochnik azotchika, Ed. E.Ya.Melnikov, Moscow : Himija, 1967, 492 p. (Rus.)

 

 

Pyatnichko A.I., Candidate of Technical Sciences, Ivanov Yu.V., Zhuk G.V., Doctor of Technical Sciences, Onopa L.R., Soltaniberehne Ě.Ŕ.

The Gas Institute of National Academy of Sciences of Ukraine, Kiev

39, Degtyarevskaya Str., 03113 Kiev, Ukraine, e-mail: aipkiev@ukr.net, iv2102@mail.ru

Comparative Analysis of the Energy Characteristics of Amine and Water Absorption Processes Extracting CO2 and H2S from Biogas

Currently in the world we remark wide development of biomethane from biogas production projects and it’s utilization as a universal fuel and engine fuel, it’s supply to the natural gas distribution network. The authors made a comparative assessment of energy costs of biomethane production from biogas, using common amine and waterabsorption processes of carbon dioxide and hydrogen sulfide extraction from biogas. For amine case, extraction of acid components process operating costs consist largely (up to 70–80 %) of the energy expenses for the regeneration of saturated amine, therefore, proposed solution is an effective absorbent — aqueous solution of methyldiethanolamine (MDEA, 40 %) (MDEA, 40 %) and monoethanolamine (IEA, 10 %), usage of which 2,3–2,5 times reduces heat load in the stripper reboiler in comparison with conventional solutions of monoethanolamine (MEA). Comparison of specific energy consumption for production biomethane using an amine and water purification technology of biogas from CO2 and H2S shows that the last has a 20–30 % lower power consumption than the amine. Our studies have shown that under comparable conditions the CO2 concentration at the outlet of the amine desorbing process is in the range of 98 % versus 80 % with water absorption, that indicates a loss of CH4 with gas desorption. Amine absorption gives an output of biomethane on average on 15 % more than water. Using this difference of produced biomethane the additional cost of the regeneration of the rich absorbent is compensated. Furthermore, water absorption requires a significant amount of water, it is connected with environmental concerns and the availability of water resources. In addition, if necessary, during the production of commercial carbon dioxide, the amine process has the advantage of CO2 concentration it is substantially higher at the outlet of the stripper. The comparative analysis of these schemes was conducted using GasCondOil and HYSYS software systems. The results and parameters of the biogas purification process from acid components can be used to calculate the carbon dioxide recovery process and to obtain biomethane — natural gas analogue. Bibl. 17, Fig. 9, Tab. 4.

Ęëţ÷îâł ńëîâŕ: biomass, biogas, biomethane, CO2, H2S, technology of biogas, absorption, desorption, energy consumption.

 

References

1. Tylim A. A Different Way to Look at Waste: Creating a Source for Renewable Products. — Access mode. — http://www.renewableenergyworld.com, April 13, 2016

2. Biomassa kak istochnik jenergii, Ed. S.Soufera, O.Zaborski, Moscow : Mir, 1985, 368 p. (Rus.)

3. Pjatnichko A.I., Bannov V.E. Utilizacija biogaza zakrytyh poligonov TBO, Jekologija pljus, 2009, (4), pp. 12–14. (Rus.)

4. Ukraina vozobnovila import gaza iz Vengrii, Korrespondent.biz, 5 ijunja 2015 g. — Access mode. — http://korrespondent.net/business/economcs /3523674-ukraynavozobnovyla-ymport-haza-yz-ven hryy (Rus.)

5. Fredric Bauer, Christian Hulteberg, Tobias Persson, Daniel Tamm. Biogas upgrading : Review of commercial technologies / SGC Rapport 2013:270

6. Mattias Svensson. Biomethane standards. Gas quality standardization of biomethane, going from national to international level, Brussels, 11 March 2014.

7. — Access mode. — http://www.valorgas.soton. ac.uk/Pub_docs/Delhi_Aug_2013/Biogas%20Vehi cle %203/biogas %20upgrading8-13.pdf

8. Kalashnikov O.V., Budnjak S.V., Ivanov Yu.V. [Engineering Calculating Models of Technologies of Oil and Gas Field Processes. 5. Program System GasCondOil, Jekotehnologii i resursosberezhenie [Ecotechnologies and Resource Saving], 1996, (2), pp. 50–51. (Rus.)

9. Kalashnikov O.V., Ivanov Ju.V., Budnjak S.V. [Adequacy Issies of Thermophysic Base of Program System HYSYS, PRO-2 and GasCondOil. 1. Hydrocarbon Mixtures], Jekotehnologii i resursosberezhenie [Ecotec hnologies and Resource Saving],1999, (6), pp.13–18.(Rus.)

10. Kalashnikov O.V., Ivanov Yu.V., Budnjak S.V. [Adequacy Issies of Thermophysic Base of Program System HYSYS, PRO-2 and GasCondOil. 2. Hydrocarbon Mixtures, Water, Metanol and Glikol], Jekotehnologii i resursosberezhenie [Ecotechnology and Resource Saving], 2000, (1), pp. 31–35. (Rus.)

11. Kalashnikov O.V. Ivanov Yu.V., Onopa L.R. [Adequacy Issies of Thermophysic Base of Program System HYSYS, PRO-2 and GasCondOil. 5. The Problems of Thermodynamics Models of Gas-Liquid Muxtures Choice], Jekotehnologii i resursosberezhenie [Ecotechnology and Resource Saving], 2006, (2), pp. 10–13. (Rus.) 12. — Access mode. — http://dpva.info/guide/ guidephysics/solvability/solvabilityofsomegases/

13. Lavrenchenko G.K., Kopytin A.V. Pjatnichko A.I., Ivanov Yu.V. Optimizacija sostava absorbenta «aminy — voda» uzla izvlechenija SO2 iz dymovyh gazov, Tehnicheskie gazy, 2011, (1), pp. 16–25. (Rus.)

14. Pjatnichko A.I., Ivanov Ju.V., Zhuk G.V., Onopa L.R. Sravnitel’nyj analiz jeffektivnosti sposobov izvlechenija dioksida ugleroda iz tehnologicheskih gazov, Tehnicheskie gazy, 2014, (4), pp. 58–66. (Rus.)

15. P’jatnychko O.I., Zhuk G.V., Ivanov Yu.V. Dosvid utylizacii zvalyshhnogo gazu v energetychnyh ustanovkah v Ukrai’ni, Kiev : Agrar Media Group, 2015, 126 p. (Ukr.)

16. Pjatnichko A.I., Ivanov Yu.V., Zhuk G.V., Onopa L.R. Optimizacija parametrov ustanovki absorbcii /desorbcii dlja proizvodstva biometana iz biogaza, Tehnicheskie gazy, 2015, (2), pp. 58–63. (Rus.)

17. Pjatnichko A.I., Ivanov Yu.V., Zhuk G.V., Onopa L.R. Optimizacija parametrov tehnologicheskoj shemy aminovoj ochistki biogaza ot SO2 i H2S, Jenergotehnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2015, (1), pp.121–129. (Rus.)

 

Lyashok L.V., Candidate of Technical Sciences, Professor, Brovin A.Yu., Candidate of Technical Sciences, Tashlykovych K.N.

National Technical University «Kharkiv Polytechnic Institute»

21, Bagalei Str., 61002 Kharkiv, Ukraine, e-mail: lyashok@kpi.kharkov.ua, postreader@ukr.net

Niobium Recycling from the Industrial Wastes

Recycling technologies of the wastes containing niobium with using various methods are considered. Advantages of the hydrometallurgical method of industrial wastes treatment are shown. Thermodynamic characteristics of the leaching process are calculated. The process parameters of niobium compound dissolution are determined. Some methods of production of metallic niobium powder of various dispersions are proposed. Niobium refining processes using oxygen-free ionic melts, which allow extraction of niobium powder or compact electrochemical niobium coatings, are investigated. The influence of current density, temperature and electrolyte components concentration on a current efficiency and characteristics of coatings are established. Increasing of current density and coating thickness, respectively, leads to the deposition of macrocrystalline coatings. Niobium deposition on copper leads to deposition of coatings with a slight interdiffusion. The proposed niobium refining methods allow receiving high purity metal in a compact or powder form. Bibl. 5, Fig. 2, Tab. 1.

Key words: niobium, recycling, industrial wastes treatment, refining, ionic melt, electrochemical coating.

 

References

1. Korovin S.S., Drobot D.V., Fedorov P.I. [Rare and dispelled elements. Himija i tehnologija], Moscow : Moskovskij institut stali i splavov, 1999, 461 p. (Rus).

2. Bajrachnij B.˛., Ljashok L.V. [Rare and dispelled elements. The Technology of Production and Use], Kharkov : Nacional’nyj tehnicheskij universitet «Har’kovskij politehnicheskij institut», 2007, 288 p. (Ukr).

3. Savickij E.M., Burhalov G.S. [Refractory metals and their alloys], Moscow : Metallurgija, 1986, 331 p. (Rus). 4. Lidin R.A., Molochko V.A., Andreeva L.L. [Chemical properties of mineral substances], Moscow: Himija, 2000, 480 p (Rus).

5. Zelikman A.N. [Metallurgy of refractory rare metals], Moscow : Metallurgija, 1986, 440 p. (Rus).

 

Sigal I.Ya., Doctor of Technical Sciences, Professor, Smikhula A.V., Candidate of Technical Sciences, Duboshiy O.M., Candidate of Technical Sciences, Horbunov O.V., Horbunov Ŕ.O.

The Gas Institute of National Academy of Sciences of Ukraine, Kiev

39, Degtjarivska Str., 03113 Kiev, Ukraine, e-mail: isigal@ukr.net

Reducing the Formation of Nitrogen Oxides During the Combustion of Natural Gas

The purpose of researches, the results of which are given in the article was to determine the dominant components of ballasting gases that affect the formation of NOx during combustion of natural gas, as well as methods their feed into the combustion chamber. It is defined that most influence for formation NOx in exhaust gases derive in case is ballast gas with gaseous fuels on molecular level pre-mixed, but not with blast air. It was shown experimentally that premixing the ballast gas (CO2 or N2) with the natural gas provides reducing the formation of nitrogen oxides during combustion of the mixture. Thus, by mixing natural gas with 10 % ballasting gas ([Vá/(Vă – Vá)].100, a = 1) NOx reduction achieved in the case of using N2 52 %, CO2 — 95 %. Mixing exhaust gases (combustion products) at the recirculation ratio r = 10 with natural gas in the burner reduces the yield of nitrogen oxides by 44 %, and in case their pre-mixing with blast air on the 24 %. CO2 mixing with blast air (r = 10) reduces the yield of nitrogen oxides by 34 %. Developed and tested burners for boilers with capacity of 110 t/h of steam with added exhaust gases to natural gas in the burner. Bibl.18, Fig.12, Tab.1.

Key words: nitrogen oxides, natural gas, ballast, combustion.

 

References

1. Association Agreement between the European Union and the European Atomic Energy Community and their Member States, of the one part, and Ukraine, of the other part, Kiev, March 2014, 277 p. — Access mode: http://www.consilium.europa. eu/en /documents-publications/agreements-conventions /agreement/?aid=2014045 (Ukr.)

2. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control), 119 p. — Access mode: http://eur-lex. europa.eu/legal-content/EN/TXT/?uri= CELEX :32010L0075

3. Directive 2001/80/EC of the European Parliament and of the Council of 23 October 2001 on the limitation of emissions of certain pollutantsinto the air from large combustion plants, 21 p. — Access mode: http: // eur-lex.europa.eu/legal-content/EN/TXT/?uri= CELEX:32001L0080

4. Pro zatverdzhennya tekhnolohichnykh normatyviv dopustymykh vykydiv zabrudnyuyuchykh rechovyn iz teplosylovykh ustanovok, nominalna teplova potuzhnist yakykh perevyshchuye 50 MVt : Nakaz Ministerstva okhorony navkolyshnoho pryrodnoho seredovyshcha Ukrayiny from 22.10.2008 No. 541. (Ukr.)

5. Enerhetychna stratehiya Ukrayiny na period do 2030 r. : Kabinet of Ministers of Ukraine — Law of Ukraine, 24.07.2013 No. 1071-đ. — Access mode: http:// zakon4.rada.gov.ua/laws/file/text/24/f417479n5.zip. (Ukr.)

6. Sigal I.Ya. Protection of ambient air at fuel burning: Monograph, Leningrad : Nedra., 1988, 313 p. (Rus.)

7. Sigal I.Ya., Duboshiy A.N., Sigal O.I., Smikhula A.V. The efficiency increase of smoked gases recirculation influence on nitrogen oxides emission from power plant boilers reduction, Energotechnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2010, (1), pp. 48–52. (Rus.)

8. Karp I.M., Sigal I.Ya., Smikhula A.V., Duboshiy O.M. [About Change Fuel Project for Large Fossil- Fuel Thermal Power Station of Ukraine], Enerhetyka i elektryfykatsyya, 2016, (3), pp. 27–36.

9. Directive (EU) 2015/2193 of the European Parliament and of the Council of 25 November 2015 on the limitation of emissions of certain pollutants into the air from medium combustion plants. — Access mode: http:// eur-lex.europa.eu/legal-conent/EN/TXT/?uri= CELEX%3A32015L2193

10. Natsionalnyy plan skorochennya vykydiv vid velykykh spalyuvalnykh ustanovok, Kiev, 15 March 2015, 78 p. — Access mode: http://mpe.kmu. gov.ua/ minugol/doccatalog/document?id=244996332. (Ukr.)

11. Certificate of authorship 173396 USSR. Vodohreynyy kotel, I.Ya.Sigal, E.M.Lavrentsov, E.P. Dombrovska, Publ. 21.07.65, Bull. 15. (Rus.)

12. Lavrentsov E.M., Sigal I.Ya., Smikhula A.V., Berezanskiy V.V., Ovchar V.V. [Water Boilers of 50 Ýíĺđăîňĺőíîëîăčč č đĺńóđńîńáĺđĺćĺíčĺ. 2016. ą 4 TVG and KVG Types Modernization], Energotechnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2010, (6), pp. 70–76. (Rus.)

13. Sigal I.Ya., Nizhnik S.S. Zmenshennya utvorennya oksidiv azotu retsirkulyatsieyu produktiv zgoryannya, Tsukor Ukraini, 1994, (3), pp. 14–16. (Ukr.)

14. Zeldovich Ya.B., Sadovnikov P.Ya., Frank- Kamenetskiy D.A. Okisleniye azota pri gorenii [Formation of Nitric Oxide Following Combustion], Moscow, Leningrad : Izdatelstvo Academii Nauk SSSR, 1947, 145 p. (Rus.)

15. Liu F., Guo H., Smallwood G.J. The Chemical Effect of CO2 Replacement in Air on the Burning Velocity of CH4 and H2 Premixed Flames, Combustion and Flame, 2003, 133, pp. 495–497.

16. Gurevich N.A. The chemical effect of CO2 addition on methane burning velocity by Zel’dovich theory, Energotechnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2011, (5), pp. 3–10. (Rus.) 17. Sigal I.Ya., Smikhula A.V., Marasin O.V., Kouts V.P., Dombrowska E.P., Kolchev V.O., Kernazhytska E.S. [Experimental research of a biogas as a fuel for boilers], Energotechnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2013, (5), pp. 26–32. (Rus.)

18. Sigal I.Ya., Kosinov O.I., Duboshiy O.M., Nizhnik S.S. Povysheniye effektivnosti metodov snizheniya obrazovaniya oksidov azota v topkakh kotlov, Teploenergetika, 1986, (7), pp. 6–9. (Rus.)

 

Movchaniuk O.M., Candidate of Technical Sciences, Gomelya N.D., Doctor of Technical Sciences, Professor

National Technical University of Ukraine «Kiev Polytechnic Institute», Kiev

37, Peremohy Ave., 03056 Kiev, Ukraine, e-mail: movchaniukom@gmail.com

Heterogeneous Ion-Exchange Cellulose Membranes for Electrodialysis

A new method of obtaining cellulose heterogeneous ion exchange membranes was designed for an electrodialysis with the purpose of desalting of salt and brackish waters, and also for the reagentless processing of technogenic waste as weak solutions of salts with the simultaneous regeneration of acids and lyes and returning them into technological process. Influence of composition of the obtained membranes on their electrotransport characteristics was investigated. A comparative analysis of the electrical conductivity and selectivity of membranes with serial ion exchange membranes MK-40 and MA-41 was produced. It was shown that membranes samples have sufficiently high conductivity, which in some cases is higher than at the serial membranes MK-40 and MA-41 It was found that the selectivity of the new membranes is not lower than at serial ion exchange membranes. Efficiency of obtained membranes is near to serial at desalination of solution of natrium sulfate. Bibl. 8, Fig. 6, Tab. 3.

Key words: membrane, cellulose, cationite KU-2-8, anionite AV-17-8, electrodialysis, solution of natrium sulfate, conductivity, selectivity on the transfer of counter.

 

References

1. Goncharuk V.V., Mamchenko A.V., Klimenko N.A. [Prospects for the development of basic and applied research in physics, chemistry and biology of water], Kiev : Naukova dumka, 2011, 407 p. (Rus.)

2. Pisarska B. Dylevski R. [Analysis of terms of receipt of H2SO4 and NaOH from solutions of sulfate of natrium the method of electrodialysis], Zhurnal prikladnoj himii, 2005, 78, Iss. 8, pp. 1311–1316. (Rus.)

3. Gorjachij N.V. [Electro-membrane processes], Moscow : Rossijskij himiko-tehnologicheskij universitet, 2007. — Access mode: http:// www.membrane. msk.ru/books/?id_b=14. (Rus.)

4. Mulder M. [Introduction to membrane technology], Moscow : Mir, 1999, pp. 370–375. (Rus.)

5. Kozaderova O.A., Shaposhnik V.A., Reznikov A.A., Garshina T.I. [Physical and chemical descriptions of an experience party of heterogeneous ion-exchanging membranes], Kriticheskie tehnologii. Membrany, 2008, (1), pp. 3–8. (Rus.)

6. Patent Ukrai’ny na korysnu model’ 106565, MPK B 01 D 61/00, B 01 D 67/00. Sposib otrymannja geterogennyh ionoobminnyh membran, O.M.Movchanjuk, M.D.Gomelja, A.V.Semenjuk, u201511621; zajavl. 24.11.15. — Publ. 25.04.16, Bull. 8. (Ukr.)

7. Zabolockij V.I., Nikonenko V.V. [A transfer of ions in membranes], Moscow : Nauka, 1996, 392 p. (Rus.)

8. Antropov M.I. [Theoretical electrochemistry], Kiev : Lybid, 1993, 544 p. (Ukr.)

 

Trotsenko L.N., Candidate of Technical Sciences

The Gas Institute of National Academy of Sciences of Ukraine, Kiev

39, Degtyarivska Str., 03113 Kiev, Ukraine, e-mail: t-ln@ukr.net

Features Design and Thermal Performance of Rotary Kilns and Perspective Directions of their Improvement (Review)

This is a review of rotary kilns for thermal treatment of granular and lump materials. The main directions and achievements obtained in the field of energy efficiency and improvement of the quality of the final product are shown while using such furnaces. Shown reserves improve rotary kilns of the domestic industry, including reducing the loss of working space, recycling of heat from the furnace and the intensification of heat and mass transfer processes in the working volume. The purpose of this survey is to identify promising areas for improving the design and operation of thermal rotary kiln based on the analysis of experience of their operation. Bibl. 32.

Key words: rotary kiln, the bulk material, energy saving.

 

References

1. Valberg S.G. Prirodny gas v tcementnoy promishlenosti, Moscow : Gosstroyizdat, 1962, 172 đ. (Rus.)

2. Monastyryov Ŕ.V., Aleksandrov Ŕ.V. [Furnaces for Lime Production], Moscow : Metallurgy, 1979, 232 p. (Rus.)

3. Galnbek A.A., Shalygin L.M., Shmonin Yu.B. Rascheti pirometalurgicheskix protcesov i aparaturi tcvetnoy metalurgii, Chelabinsk : Metalurgiya, 1990, 379 p. (Rus.)

4. Gitis E.B., Strigunov F.I., Vasilieva L.F. Poluchenie sulfata aluminiya iz kaolina, Khimicheskay promishlenost, 1985, (5), pp. 32–33. (Rus.)

5. Gitis E.B., Strigunov F.I., Solyznix S.K. Vostanovlenie tcelestina vo vrashayusheysya pechi, Khimicheskay promishlenost, 1980, (4), pp. 60–62. (Rus.)

6. Pinchyk M. Nugnoe iz nenugnogo, Nauka i Zhizn, 1986, (7), pp. 56–61. (Rus.)

7. Lentcov D.I. Teplovoy balans vrashayusheysya pechi dlya proizvodstva izvesti i ego analiz. Trudi 17th megdunarodnoy konferentcii «Teplotexnika i energetika v metalurgii», Dnepropetrovsk, 7–9 Okt. 2014, Dnepropetrovsk : Nacional’naja Metallurgi- cheskaja Akademija Ukrainy, 2014, pp. 115–116. (Rus.)

8. Karp I.N. Energosberegeniye v Ukraine : Problemy i puti resheniya, Ecotechnologii i resursosberegeniye [Ecotechnologies and Resource Saving], 2004, (4), pp. 3–13. (Rus.)

9. Gubiskiy V.A. Aktualnie zadachi rekonstruktcii nagrevatelnix pechey, Metalurgicheskaya teplotechnika : Sbornik nauchnich trudov Nacional’noj Metallurgicheskoj Akademii Ukrainy, Dnepropetrovsk : Porogi, 2005, Iss. 1, pp. 149–156. (Rus.)

10. Trotsenko L.N., Pikashov V.S. Sistema regulirovaniya temperaturnogo reshima vrashayusheysya pechi, Energotechnologii i resursosberegenie [Energy Technologies and Resource Saving], 2015, (5–6), pp. 88–92. (Rus.)

11. Kleyn G.K. Stroitelnaya mexanika sipuchih tel, Moscow : Gosstroyizdat, 1956, 437 p. (Rus.)

12. Baum V.A. Metalurgicheskiye pechi, Moscow : Metalurgizdat, 1951, 975 p. (Rus.)

13. Dolginun V.N., Ivanov O.O., Ukolov A.A. The treatment of nonuniform granular materials by means of operating the segregated flows, Transactions of TSTU, 2008, 14 (2), pp. 321–327.

14. Tring M.V. Nauka o plamenax v pechax, Moscow : Metalurgizdat, 1958, 482 p. (Rus.)

15. Petrash V.D. Teplopostachanya na osnovi utilizatcii energii oxolodgenya obertovix pechey, yake regulyuetsya : Avtoreferat na zdobutya naukovogo ctupenya doktora texnichnih nauk, Kharkov, 2004, 33 p.(Ukr.)

16. Khrestomatiya energosberegenya, Ed.Lisienko V.G., Moscow : Teplotechnik, 2003, 688 p. (Rus.)

17. Trusova I.A., Mendeleev D.V., Ratnikov P.E. Vibor gorelochnogo ustroystva pri proizvodstve klinkera vo vrashayushichsya pechach, Litye i metallurgiya, 2011, (1), pp. 124–126. (Rus.)

18. Yurkova V.V., Shklyar V.I., Dubrovska V.V. Ekologichna ta ekonomichna dotcilnist spalyuvanya lushpinya sonyashnika dlya teplozabezpechenya obektu, Tezisi dokladov megdunarodnoj nauchnotechnich. konferentcii «Energoefektivnost-2013», Kiev, 14–16 Okt. 2013, Kiev, 2013, pp. 98–99. (Ukr.)

19. Lisenko A.A., Pianykh K.Ye., Antoshchuk T.A., Pianykh K.K. Ispolzovaniye biotopliva dlya obzhiga materialov vo vrashayushichsya pechach, Trudi 17th megdunarodnoy konferentcii «Teplotechnika i energetika v metalurgii», Dnepropetrovsk, 7–9 okt. 2014, Dnepropetrovsk : Nacional‘naja Metallurgicheskaja Akademija Ukrainy, 2014, pp. 123–124. (Rus.

20. Osievskiy V.A., Kitranov S.A., Pikashov V.S., Velikodny V.A. Tehnologiya szhiganiya zhidkich otchodov v tcementnich pechah, Promishlennaya teplotechnika, 2001, 23 (4–5), pp. 111–113. (Rus.)

21. Trotsenko L.N., Pikashov V.S., Novikov N.V., Dunaychuk S.N., Tcvetkov S.V., Pruskiy A.A, Îpit perevoda vrashayushixsya barabanix pechey na otoplenie prirodnim gazom, Energotexnologii i resursosberegeniye [Energy Technologies and Resource Saving], 2009, (1), pp. 73–75. (Rus.)

22. Teploizolyatciya. Materiali. Konstruktcii. Tehnologii, Ed. Kochergin S.M., Moscow : Stroyinform, 2008, 440 p. (Rus.)

23. Krivandin V.A., Molchanov N.G., Solomentcev S.L. Metallurgicheskaya teplotehnika, Moscow : Metallurgiya, 1986, 2, 424 p. (Rus.)

24. Khodorov E.I. Pechi tcementnoy promishlenosti, Leningrad : Giprotcement, 1968, 452 p.(Rus.)

25. Kolodyagniy V.S., Gubinskiy M.V., Pererva V.Ya., Usenko A.Yu., Volkov V.F., Tryapichkin M.G., Trudi 16th megdunarodnoy konferentcii «Teplotechnika I energetika v metalurgii», Dnepropetrovsk, 4–6 Okt. 2011, Dnepropetrovsk : Nacional’naja Metallurgicheskaja Akademija Ukrainy, 2014, pp. 107–108. (Rus.)

26. Markus A.A. Modelirovanie teplovih protcesov v trubchatix vrashayushixsya pechax spekaniya : Avtoreferat na zdobutya naukovogo ctupenya Candidata Texnichnih Nauk, Sankt-Peterburg, 2014, 22 p. (Rus.)

27. A.s. 1606832 SU, IC F 27 B 7/00. Vrashayushayasya pech, E.P.Makov, Yu.A.Tupkin, V.A. Miler, G.V.Khramkov, S.P.Makov, Publ. 15.11.90, Bull. 42. (Rus.)

28. Detkov S.P., Erinov A.E. Teplovie protcesi v pechax alyuminievoy promishlenosti, Kiev : Naukova dumka, 1987, 270 p. (Rus.)

29. Lentcov I.A. Teplovoy balans vrashayusheysya pechi dlya obgiga izvestnyaka i ego analiz, Vestnik Priazovskogo dergavnogo texnichnogo universitetu, Seriya: Tehnichni nauki, 2014, Iss. 29, pp. 103–115. (Rus.) 30. — http://www: metso.com/miningandconstruction /MaTobox.

31. Tckitishvili E.o., Trotsenko L.N., Pikashov V.S., Matcishin N.V., Kukuy K.A., Leykovskiy K.G., Vinogradova T.V., Adjustment of Flame Parameters as Mean of Fuel Economy at Burning Lime, Energotechnologii i resursosberegenie [Energy Technologies and Resource Saving], 2013, (1), pp. 57–64. (Rus.)

32. Trotsenko L.N., Pikashov V.S., Vinogradova T.V. Povishenie efektivnosti nagreva i obgiga sipuchih materialov vo vrashayushixsya pechah, Metallurgicheskaya i gornorudnaya promishlenost, 2014, (5), pp. 101–104. (Rus.)